• 제목/요약/키워드: CYP7A1 activity

검색결과 97건 처리시간 0.023초

Morin이 benzo(k)fluoranthene에 의한 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향 (Effects of Morin on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells)

  • 양소연;김여운;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권4호
    • /
    • pp.189-197
    • /
    • 2004
  • We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. When cells were treated with morin alonem, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, morin inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But morin exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate morin might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression. CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important.

  • PDF

Daidzein이 benzo(k)fluoranthene에 의한 사람 유방암 세포 MCF-7의 CYP1A1 유전자 발현 조절에 미치는 영향 (Effects of Daidzein on benzo(k)fluoranthene Regulated CYP1A1 Gene Expression in MCF-7 Human Breast Cancer Cells)

  • 양소연;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권4호
    • /
    • pp.180-188
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. We investigated the effect of dietaty flavonoid, such as CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. Based on the three criteria of frequency of occurrence in the environment, toxicity and potential exposure to humans, B(k)F is one of the top-listed PAHs. We found that B(k)F significantly up-regulates the level of CYP1A1 promoter activity, EROD and CYP1A1 mRNA. when cells were treated with daidzein inhibited the B(k)-induced CYP1A1 prompter activity and mRNA level at high concentration. But daidzein exhibited stimulatory effects B(k)F-induced CYP1A1 promoter activity and mRNA level at low concentration. Overall, results from these studies demonstrate flavonoids might interfere the action of B(k) with AhR system to stimulate CYP1A1 gene expression.

  • PDF

Effects of Hydroxyl Group Numbers on the B-Ring of 5,7-Dihydroxyflavones on the Differential Inhibition of Human CYP 1A and CYP1B1 Enzymes

  • Kim Hyun-Jung;Lee Sang Bum;Park Song-Kyu;Kim Hwan Mook;Park Young In;Dong Mi-Sook
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1114-1121
    • /
    • 2005
  • Flavonoids are polyphenols composed of two aromatic rings (A, B) and a heterocyclic ring (C). In order to determine the effects of the number of hydroxyl groups in the B-ring of the flavonoids on human cytochrome P450 (CYP) 1 family enzymes, we evaluated the inhibition of CYP1A-dependent 7-ethoxyresorufin O-deethylation activity by chrysin, apigenin and luteolin, using bacterial membranes that co-express human CYP1A1, CYP1A2, or CYP1B1 with human NADPH-cytochrome P450 reductase. Chrysin, which possesses no hydroxyl groups in its B-ring, exhibited the most pronounced inhibitory effects on CYP1A2-dependent EROD activity, followed by apigenin and luteolin. On the contrary, CYP1A1-mediated EROD activity was most potently inhibited by luteolin, which is characterized by two hydroxyl groups in its B-ring, followed by apigenin and chrysin. However, all of the 5,7-dihydroxyflavones were determined to similarly inhibit CYP1B1 activity. Chrysin, apigenin, and luteolin exhibited a mixed-type mode of inhibition with regard to CYP1A2, CYP1B1, and CYP1A1, with apparent Ki values of 2.4, 0.5, and 2.0 ${\mu}M$, respectively. These findings suggested that the number of hydroxyl groups in the B-ring of 5,7-dihydroxyflavone might have some influence on the degree to which CYP1A enzymes were inhibited, but not on the degree to which CYP1B1 enzymes were inhibited.

Inhibition of 7-Alkoxyresorufin O-Dealkylation Activities of Recombinant Human CYP1A1 and CYP1B1 by Resveratrol

  • Dong, Mi-Sook;Chang, Suk-Kyung;Kim, Hyun-Jung;F. Peter Guengerich;Park, Young-In
    • 한국환경성돌연변이발암원학회지
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 2002
  • Resveratrol is known to have potent cancer chemopreventive activity against tumorigenesis caused by 7,12-dimetylbenz[$\alpha$]anthracene(DMBA) which is known to be oxidized to reactive products by cytochrome P450 1B1 (CYP1B1). The effects of resveratrol on the activity of recombinant human P450 1 family enzymes, expressed in Escherichia coli membranes with human NADPH-P450 reductase, were determined by measuring alkoxyresorufin O-dealkylation activity, e.g., ethoxyresorufin O-deethylation (EROD) CYP1A1, methoxyresorufin O-demethylation (MROD), CYP1A2, benzyloxyresorufin-O-debenzylation (BROD), CTP1B1. Resveratrol inhibited CYP1B1 and CYP1A1 activities in a dose-dependent manner with $IC_{50}$/ values of 59 and 10$\mu$M for EROD activity and 1.8 and 30$\mu$M for BROD activity, respectively. Resveratrol had only weak inhibitory effect on CYP1A2 activity ($IC_{50}$/ values of 0.44 mM for EROD and >2 mM for MROD). Furthermore, resveratrol did not affect NADPH-P450 reductase activity significantly. Resveratrol inhibited the CYP1B1-dependent EROD activity with a $K_{i}$ of 28 $\mu$M in a non-competitive type manner. these results suggest that resveratrol-derived inhibited of CYP1B1 and CYP1A1 activities may contribute to the suppression of DMBA inducible tumorigenesis observed in extrahepatic tissues.s.

  • PDF

Bioassays of Polycyclic Aromatic Hydrocarbons using CYP1A1-luciferase Reporter Gene Expression System in Human Breast Cancer MCF-7 Cells

  • Kim, Ja-Y.;Sheen, Yhun-Y.
    • 한국환경성돌연변이발암원학회지
    • /
    • 제23권2호
    • /
    • pp.45-50
    • /
    • 2003
  • Biological activities of PAHs are not known although PAHs are considered as carcinogens. Recent industrial society has human widely exposed to PAHs (polynuclear aromatic hydrocarbons) that are comming from the incomplete combustion of organic material as wider spread environmental contaminants. Our laboratory have been studied the effect of PAHs in the human breast cancer MCF-7 cells. In this study, we examined the human breast cancer MCF-7 cells as a new system to evaluate bioactivity of PAHs. We have selected 13 PAHs to examine bioassay using CYP1A1-luciferase reporter gene expression system where CYP1A1 1.6 Kb 5flanking region DNA was cloned in front of luciferase reporter gene and this plasmid was transfected into MCF-7 cells transiently. This cells then used for the study to observe the effect of PAHs. We demonstrated that PAHs induced the CYP1A1 promoter, CYP1A1 mRNA and 7-ethoxyresolufin O-deethylase (EROD) activities in a concentration-dependant manner. None of PAHs that we have tested showed stronger stimulatory effect on CYP1 gene expression than TCDD. Benz(a)anthracene and benzo(b)fluoranthene were weak responders to CYP1A1 promoter activity stimulation, CYP1A1 mRNA and EROD induction in MCF-7 cells and these chemicals seemed to respond less either CYP1A1 mRNA or EROD than CYP1A1 promoter activity. Benzo(k)fluoranthene, chrysene, and dibenzo(a, h)anthracene showed strong response to CYP1A1 promoter activity stimulation, CYP1A1 mRNA increase and also EROD induction in MCF-7 cells. Results of dose response study suggested that two strong responding PAHs, such as benzo(k)fluoranthene and dibenzo(a, h)anthracene might be mediated through Aryl hydrocarbon receptors system in MCF-7 cells.

  • PDF

Hypoxic repression of CYP7A1 through a HIF-1α- and SHP-independent mechanism

  • Moon, Yunwon;Park, Bongju;Park, Hyunsung
    • BMB Reports
    • /
    • 제49권3호
    • /
    • pp.173-178
    • /
    • 2016
  • Liver cells experience hypoxic stress when drug-metabolizing enzymes excessively consume O2 for hydroxylation. Hypoxic stress changes the transcription of several genes by activating a heterodimeric transcription factor called hypoxia-inducible factor-1α/β (HIF-1α/β). We found that hypoxic stress (0.1% O2) decreased the expression of cytochrome P450 7A1 (CYP7A1), a rate-limiting enzyme involved in bile acid biosynthesis. Chenodeoxycholic acid (CDCA), a major component of bile acids, represses CYP7A1 by activating a transcriptional repressor named small heterodimer partner (SHP). We observed that hypoxia decreased the levels of both CDCA and SHP, suggesting that hypoxia repressed CYP7A1 without inducing SHP. The finding that overexpression of HIF-1α increased the activity of the CYP7A1 promoter suggested that hypoxia decreased the expression of CYP7A1 in a HIF-1-independent manner. Thus, the results of this study suggested that hypoxia decreased the activity of CYP7A1 by limiting its substrate O2, and by decreasing the transcription of CYP7A1.

Equol Modulates Induction of Hepatic CYP 1A1, 1B1, and AhR in Mice Treated with 7,12-Dimethylbenz(a)anthracene

  • Choi, Eun-Jeong;Kim, Gun-Hee
    • Food Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.245-248
    • /
    • 2009
  • Present study was investigated the hepatic effects of equol on the 7,12-dimethylbenz(a)anthracene (DMBA)-induced enzymatic activity and expression of CYP1A1 and CYP1B1 in mice. Equol was administered orally at 5 and 25 mg/kg BW for 4 weeks. Subsequently, mice pretreated with equol received DMBA intragastrically twice a week for 2 weeks. DMBA induced CYP1 activity as well as the expression of CYP1A1 and CYP1B1. Each of these effects was significantly reduced by equol in dose-dependent manner (p<0.05). Equol also reduced the relative AhR mRNA expression, similar to its effect on CYP1A1. These results suggest that equol modulates the CYP1A1 through a reduction of AhR expression in mice treated with DMBA.

사람 유방암 세포 MCF-7에서 Benzo(k)fluoroanthene과 genistein이 CYP1A1 유전자 발현에 미치는 영향 (Effect of Benzo(k)fluoroanthene and Genistein on CYP1A1 Gene Expression in Human Breast Cancer MCF-7 Cells.)

  • 양소연;민경난;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권3호
    • /
    • pp.128-136
    • /
    • 2004
  • CYP1A1 is known to be inducible by xenobiotic compouds such as polyciclic aromatic hydrocarbons(PAHs) and 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). These chemicals have been identified worldwide and can have a significant impact on the human health and well being of human and wildlife. Given these issues, the detection and quantification of these chemicals in biological, environmental and food samples is important. First, we investigated the effect of on CYP1A1 promoter activity, 7-ethoxyresorufin-O-deethylase(EROD) activity and CYP1A1 mRNA expression induced by benzo(k)fluoranthene(B(k)F) in MCF-7 cells. We found that B(k)F significantly up-regulates the level of CYP1A1 prompter activity, EROD and CYP1A1 mRNA. When cells were treated with genistein, it was not changed that EROD and CYP1A1 mRNA, compared to that of control. However, genistein inhibited the B(k)F-induced CYP1A1 promoter activity and mRNA level at high concentration. Furthermore, in this study, effects of HDAC(histone deacetvlase) inhibitors on human prostate cancer cells proliferation were examined. HC-toxin, SAHA and TSA inhibited cell proliferation in PC3 cells. A novel HDAC inhibitor, IN2001 also suppressed the growth of PC3 cells. And IN2001 and SAHA increased S phase and G2/M phase at 12 hrs treatment but cells were arrested G0/G1 phase at 45 hrs treatment. The HC-toxin treatment for 24 hrs and 48 hrs increased G0/G1 at low concentration ($0.1\mu\textrm{m}$) but increased G2/M at more than concentration of $1\mu\textrm{m}$. TSA increased G2/M phase. These findings height the possbility of developing HDAC inhibitors as potential anticancer therapeutic agents for the treatment of prostate cancer.

  • PDF

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K.N. Min;K.E. Joung;M.J. Cho;J.Y. An;Kim, D.K.;Y.Y. Sheen
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2003년도 Annual Meeting of KSAP : International Symposium on Pharmaceutical and Biomedical Sciences on Obesity
    • /
    • pp.91-91
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa I and MCF-7 cells using transient transfection system with plAl-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAl-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HDAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa I cells with plAl-Luc, HDAC inhibitors increased the basal promoter activity only.

  • PDF

Genistein이 Benzo(k)fluoranthene에 의한 CYP1B1 유전자조절 작용에 미치는 영향 (Effect of Genistein on the Benzo(k)fluoranthene Regulated CYP1B1 Gene Expression)

  • 서미정;신윤용
    • 한국환경성돌연변이발암원학회지
    • /
    • 제24권4호
    • /
    • pp.163-170
    • /
    • 2004
  • CYP1B1 enzyme metabolize PAHs and estradiol. CYP1B1 metabolize estradiol to 4-hydroxyestradiol that is considered as carcinogenic metabolite. Luciferase activity was induced about 20 folds over that control by 1 nM TCDD (2,3,7,8-tetrchlorodibenzo-p-dioxin) and these inductions were dose-dependent. Recent industrialized society, human hasbeen widely been exposed to widespread environmental contaminants such as PAHs (polycyclic aromatic hydrocarbon) that are originated from the incomplete combustion of hydrocarbons. PAHs are known to be ligands of the AhR (aryl hydrocarbon receptor). Induction of cytochrome P4501B1(CYP1B1) in cell culture is widely used as a biomarket for PAHs. Therefore we have studied the effect of PAHs in the human breast cancer cells MCF-7 to evaluate bioactivity of PAHs. Cytochrome P4501B1(CYP1B1) is known to be inducible by xenobiotic compounda such as policyclic aromatic hydrocarbon (PAH) and dioxins such as 2,3,7,8-tetrachloro-dibenzo-p-dioxin(TCDD). And these induction of CYP1B1 is also regulated by many categories of chemicals. In order to investigate the effects of several chemicals on CYP1B1 gene expression in luciferase gene, and then transfected into these cells. After treatment of chemicals, the luciferase activity was measured. We examined effects of PAHs on the CYP1B1-lucifrease reporter gene and CYP1B1 mRNA level. Benzo(k)fluoranthene showed strong response to CYP1B1 promoter activity stimulation, and also CYP1B1 mRNAs increase in MCF-7 cells in a concentration-dependent manner. flvonoids such as genistein decreased B(k)F induced luciferase activity at low concentration. it exhibited stimulatory effect at high concentration.

  • PDF