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Abstract Present study was investigated the hepatic effects of equol on the 7,12-dimethylbenz(a)anthracene (DMBA)-
induced enzymatic activity and expression of CYP1Al and CYP1BI in mice. Equol was administered orally at 5 and 25 mg/
kg BW for 4 weeks. Subsequently, mice pretreated with equol received DMBA intragastrically twice a week for 2 weeks.
DMBA induced CYP1 activity as well as the expression of CYP1A1 and CYP1BI. Each of these effects was significantly
reduced by equol in dose-dependent manner (p<0.05). Equol also reduced the relative AhR mRNA expression, similar to its
effect on CYP1AL. These results suggest that equol modulates the CYP1A1 through a reduction of AhR expression in mice

treated with DMBA.
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Introduction

Equol [7-hydroxy-3-(4-hydroxyphenyl)-chroman] is a
bioactive metabolite of daidzein that is formed by intestinal
bacteria. It is thought to have an effect on human health
similar to that of the isoflavones genistein and daidzein.
Several reports have suggested that equol has the greatest
bioactivity of all isoflavones tested when measured in vitro
(1,2). It has been suggested that it may have great potential
as a cancer chemopreventive agent as well as isoflavones.
The anticancer effects of isoflavones were attributed to
estrogenic/antiestrogenic activity, the induction of cell-
cycle arrest and apoptosis, the inhibition of oxidative
stress, and the activation of cell death signaling (3-6). In
addition, isoflavones have been shown to affect the
cytochrome P450 (CYP) system, which is an ongoing
target of cancer drug development (7,8). The discovery of
molecules able to modulate the activity of specific CYP isomers
is a major goal in the development of chemotherapeutics
(9-11). For example, some flavonoids modulate CYP-
encoding genes either by direct ligand interaction with the
aryl hydrocarbon receptor (AhR) or by specialized xenobiotic
activated receptors (XARs), which include the AhR (12).
Until recently, the biological effects of equol, the major
metabolite of daidzein, are not as well understood as those
of daidzein itself. Therefore, to investigate the anticancer
effect of equol via modulation of CYP system, this study
was designed to analyse the expression of hepatic CYP1A1
and CYPIB1 in mice treated with chemical carcinogen
7,12-dimethylbenz(a)anthracene (DMBA) following 4
weeks of treatment with equol. As a potent procarcinogen,
DMBA requires metabolic conversion to its ultimate
carcinogenic metabolites by oxidation, which is conducted
by CYPIAl and 1BI1. In addition, DMBA induces
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substantial oxidative damage as result in the formation of
reactive oxygen species (ROS) such as peroxides, hydroxyl,
and superoxide anion radicals in organs such as the liver
and mammary glands (13,14).

Materials and Methods

Equol treatment and sample preparation Female ICR
mouse (23-25 g; Central Lab. Animal Inc., Seoul, Korea)
were housed 6 to a polypropylene cage (224+2°C, 40-50%
relative humidity) under controlled lighting (12-hr light/
dark cycle). Mice were fed an AIN 93M diet (Dyets,
Bethlehem, PA, USA) and allowed free access to water.
After an adaptation period, mice were divided randomly
into 4 treatment groups. Equol (LC Laboratories®, Woburn,
MA, USA) was dissolved in water and administered orally
to 2 groups at 5 and 25 mg/kg body weight (BW) for 4 weeks.
Subsequently, the DMBA-treated groups were intragastrically
administered a dose of 34 mg/kg BW in corn oil vehicle
twice a week for 2 weeks. The dose and timing of DMBA
treatment were selected based on the values shown in
previous reports (15,16) to induce CYP expression most
efficiently. Animal care in this study conformed to the
‘ouide for the care and use of laboratory animals’
published by the U.S. National Institutes of Health.
Twenty-four hr after the last DMBA treatment, mice were
anesthetized with ether. Microsomes of liver were prepared
by differential centrifugation within 24 hr. Each liver were
homogenized for about 60 sec in 1 mM tetraacetic acid
disodium salt (EDTA), 250 mM sucrose, and 50 mM Tris-
acetate buffer, pH 7.4. Homogenates were centrifuged at
4°C for 30min at 10,000xg. The microsomes were
obtained by centrifugation of the supernatant at 101,000 xg
for 60 min at 4°C using a 50 Ti rotor in a Beckman model
L90 ultracentrifuge.

Ethoxyresorufin-O-deethylase (EROD) assay CYP
activity was determined by formation of resorufin (Sigma-
Aldrich, St. Louis, MO, USA) from ethoxyresorufin.
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Microsomal proteins (approximately 100-250 pg) were
mixed with 100 mM phosphate buffer (pH 7.4) and 1-2
pM of 7-ethoxyresorufin, The reaction was initiated by the
addition of 0.50 mM NADPH and was incubated at 37°C
for 10 min and scanned in the microtiter plate fluorescent
reader. The reaction was stopped by the addition of methanol,
and then after centrifuged. The amount of resorufin formed
was quantified from a standard curve constructed with
known amounts of resorufin. The excitation and emission
wavelengths for the detection of resorufin were 530 and
590 nm, respectively.

Immunoblotting assay Microsomal proteins (10 pg/well)
denatured with sample buffer were separated by 10%
sodium dodecyl sulfate (SDS)-polyacrylamide gel. Proteins
were transferred onto nitrocellulose membranes (0.45-pm).
The membranes were blocked with a 1% bovaine serum
albumin (BSA) solution for 3 hr and washed twice with
Phosphate buffered saline (PBS) containing 0.2% Tween-
20, and incubated with the primary antibody overnight at
4°C. Antibodies against CYP 1A1, 1B1, and B-actin were
purchased from Santa Cruz (Santa Cruz Biotechnology,
Inc., CA, USA) and used to probe the separate membranes.
The next day, the immunoreaction was continued with the
secondary goat anti-rabbit horseradish-peroxidase-conjugated
antibody after washing for 2 hr at room temperature. The
specific protein bands were detected by Opti-4CN Substrate
kit (Bio-Rad Laboratories, Inc., Hercules, CA, USA).

Relative mRNA expression by real time-polymerase
chain reaction (RT-PCR) Samples were homogenized
with Trizol (Gibco BRL, Gaithersberg, MD, USA) and
mRNA was extracted according to the manufacturer’s protocol.
First-strand ¢cDNA was synthesized using SuperScript
First-Strand Synthesis system (Gibco BRL). Each target
mRNA expression was quantified by RT-PCR with the use
of CFB-3120 MmiOpticon™ system (Bio-Rad). CFB-
3120 MIniOpticon™ system uses an array of 48-light
emmitting diodes (LED)s, which is efficiently excite
fluorescent dyes with absorption spectra in the 470-505 nm
range. PCR reactions were carried out with 2X SYBR®
Green mix (Finnzymes, Espoo, Finland). Each mRNA
levels were calculated by means of the comparative cycle
threshold (C,) method using 2**“* according to the
manufacturer’s instructions. Glyceraldehydes-3-phosphate
dehydrogenase (GAPDH) was used as an endogenous
control (internal control). The fold change in target gene
relative to the endogenous control was determined as Fold
change=2"4“ ;where AACt=(Cliarger—Clendogenous reated group—
(Cttarget—Ctendogenous)conﬁol group* The untreated Sample
(control group) was defined as the calibrator in this
experiment. Therefore, the amounts of AhR transcripts in
the other samples were assigned dimensionless numbers
relative to the levels in the calibrator sample.

Statistical analyses Data were analyzed by one-way
analysis of variance (ANOVA) followed by Dunnett’s
multiple-comparison test (Sigma Stat, Jandel, San Rafael,
CA, USA). For all comparisons, differences were
considered statistically significant at p<0.05.
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Results and Discussion

Recently, equol has been considered to be an important
player in the bioactive mechanism of isoflavones such as
daidzein, although little information has yet been reported.
It has been reported that daidzein may be an effective agent
against cell growth in some cancer cell types (17,18). This
suggesting is consistent with that equol apparently has also
antiproliferative effects (19-21) similar to its pro-drug
daidzein.

Effect of equol on CYP1 activity as well as the
expression of CYP1A1 and CYP1B1 in mice treated
with DMBA CYPs enzymes catalyze the oxidation of
endogenous and exogenous substrates. They also play
major roles in determining the half-life of many therapeutic
agents. The physiological effects of these enzymes include
catabolizing drugs to their inactive metabolites and
converting prodrugs to their active forms (8,22). DMBA is
a polycyclic aromatic hydrocarbon (PAHs) that has been
shown to induce mammary carcinogenesis in an animal
model. It has also been used to study the initiation,
progression, pathogenesis, and prevention of human breast
carcinoma (23). DMBA is oxidized by CYPIAIl and
CYPIBI in the liver to form carcinogenic metabolites,
including diol epoxides and other toxic reactive oxygen
radicals (24-26). Consistent with these facts, we observed
a 5.27- and 4.28-folds increase .in the expression of
CYP1A1 and CYP1BI, respectively, in livers of DMBA-
treated mice compared to control mice (Fig. 1A). Equol
administration  significantly reduced the increase in
CYP1A1 by DMBA in a dose-dependent manner. At 5 and
25 mg/kg BW, equol reduced the expression of CYP1A1
by 26.19 and 68.88%, respectively, compared with the
expression observed in the DMBA group. Moreover, equol
decreased the expression of CYP1B1 by 14.75 and 29.62%
at 5 and 25 mg/kg BW, respectively, compared to the level
in the DMBA group, although changed level of CYP 1B1
expression was smaller than that observed for CYP1Al
expression. Similar pattern was observed in the results of
an EROD activity assay, which was used to determine the
level of CYP activity (Fig. 1B). DMBA strongly induced
EROD activity in livers of DMBA-treated mice as well as
the expression of CYP1Al and CYPIB1. Equol
administration significantly inhibited the CYPs activity
(27.99 and 43.92% at 5 and 25 mg/kg BW compared to the
control group, respectively, p<0.05).

Effect of equol on relative AhR mRNA expression in
mice treated with DMBA The induction of such CYP1
family members as CYP1A1, 1A2, and 1B1 is regulated by
AhR and aryl hydrocarbon receptor nuclear translocator
(ARNT). Upon binding DMBA, AhR translocates to the
nucleus where it dimerizes with ARNT. The AhR-ARNT
heterodimer functions as a ligand-activated transcription
factor, binding xenobiotic response elements (XREs) in the
CYP!1 promoter (27,28). In the present study, the AhR
relative mRNA expression was significantly increased by
approximately 2.33-fold in DMBA control mice compared
to control mice (Fig. 2). As a result of equol administration,



Modulation of Hepatic CYP 141 by Equol

247

Gontrol DMBA
CYPIAT[: = % oy

+ DMBA

7.5
A 7771 Control
5 DMBA
B B EXH Equol 5 mgiky BW + DMBA
)] ® 3 Equol 25 mgrkg BW # DMBA
g
2 50r ‘
) * 1
£ x
[ e ox
g - 22
a el oy
25} B L
S e o
= o e
o o e
g e el
¢ %
o
0.0 ]
CYP1A1 CYP 1B1
35
B 7773 Control
30 r
25 F

EROD activity
(pmol/min/10 ug protein)

DMBA
el Equotl 5 mg/kg BW + DMBA
2 Equol 25 mgikg BW + DMBA

Fig. 1. Effect of equol on expression (A) of CYP 1A1 and CYP 1B1 and activity (B) of CYPs. Values are expressed mean=SD (n=6).
For relative expression density, the protein expressions were calculated relative to B-actin and the value for the respective control group
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Fig. 2. Effect of equol on aryl hydrocarbon receptor (AhR)
mRNA expression. Values are expressed mean+SD (#=6). Level

of control group was accepted to be 1.0”. *p<0.05, significantly

difference between control and DMBA group. *p<0.05,
significantly different from the DMBA group.

the mRNA expression of AhR was significantly decreased
(24.89 and 31.76% at 5 and 2 mg/kg BW, respectively)
compared with the level of expression observed in the
DMBA group. These results suggest that a reduction in
AhR expression by equol is associated with down-

e

oulated CYP1AIl in mice treated with DMBA. These

modulations may explain the anticancer effects of equol,
although the precise mechanism underlying this action of
equol is unclear.
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