• Title/Summary/Keyword: CYP3A5

Search Result 213, Processing Time 0.029 seconds

Cytochrome P450 2C8 and CYP3A4/5 are Involved in Chloroquine Metabolism in Human Liver Microsomes

  • Kim, Kyoung-Ah;Park, Ji-Young;Lee, Ji-Suk;Lim, Sabina
    • Archives of Pharmacal Research
    • /
    • v.26 no.8
    • /
    • pp.631-637
    • /
    • 2003
  • Chloroquine has been used for many decades in the prophylaxis and treatment of malaria. It is metabolized in humans through the N-dealkylation pathway, to desethylchloroquine (DCQ) and bisdesethylchloroquine (BDCQ), by cytochrome P450 (CYP). However, until recently, no data are available on the metabolic pathway of chloroquine. Therefore, the metabolic pathway of chloroquine was evaluated using human liver microsomes and cDNA-expressed CYPs. Chloroquine is mainly metabolized to DCQ, and its Eadie-Hofstee plots were biphasic, indicating the involvement of multiple enzymes, with apparent $K_m and V_{max}$ values of 0.21 mM and 1.02 nmol/min/mg protein 3.43 mM and 10.47 nmol/min/mg protein for high and low affinity components, respectively. Of the cDNA-expressing CYPs examined, CYP1A2, 2C8, 2C19, 2D6 and 3A4/5 exhibited significant DCQ formation. A study using chemical inhibitors showed only quercetin (a CYP2C8 inhibitor) and ketoconazole (a CYP3A4/5 inhibitor) inhibited the DCQ formation. In addition, the DCQ formation significantly correlated with the CYP3A4/5-catalyzed midazolam 1-hydroxylation (r=0.868) and CYP2C8-catalyzed paclitaxel 6$\alpha$-hydroxylation (r = 0.900). In conclusion, the results of the present study demonstrated that CYP2C8 and CYP3A4/5 are the major enzymes responsible for the chloroquine N-deethylation to DCQ in human liver microsomes.

Molecular Cloning and Characterization of Bovine CYP26A1 Promoter (소 CYP26A1 유전자 프로모터의 molecular cloning 및 특성)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • The retinoic acid (RA) plays an important role in the growth and development of many cells, and bioactive RA concentration is regulated by several enzymes, including CYP26A1. The expression of the CYP26A1 gene is regulated by RA, and the CYP26A1 gene is one of the candidates for RA-responsive genes. Although CYP26A1 genes are cloned from several animals, cloning of the CYP26A1 gene from cows has not been reported yet. The promoter region of CYP26A1 from cows was cloned by PCR and analyzed by sequence alignment with human and mouse CYP26A1. The RA-responsive element (RARE), DR-5 (ttggg), was located in this region and was perfectly conserved. The promoter region of bovine CYP26A1, which contains DR-5, was ligated to the luciferase reporter gene on transient transfection assays. The expression of CYP26A1-Luc promoter was activated by ATRA treatment in lung-derived mtCC cells. Co-transfection with RAR-α or -β with ATRA significantly activates the expression of CYP26A1-Luc promoter; however, it was less effective with either RAR-γ or RXR-γ. In addition, the endogenous gene expressions measured by Q-RT-PCR in mtCC cells were not significantly affected by ATRA treatment for 2 days; however, the expression of the endogenous CYP26A1 gene was diminished sharply at day 3 with ATRA treatment. In conclusion, the promoter region of bovine CYP26A1 contains conserved DR-5 RARE, which functions as a binding site for RAR-α or -β, and it is involved in the regulation of CYP26A1 gene expression and the control of RA signaling in mtCC cells.

Transcriptional Modulation of Metabolism-Related Genes in Brackish Water Flea Diaphanosoma celebensis Exposed to Mercury (수은 노출에 따른 기수산 물벼룩의 대사 관련 유전자의 발현 양상)

  • Min Jeong, Jeon;Je-Won, Yoo;Young-Mi, Lee
    • Journal of Marine Life Science
    • /
    • v.7 no.2
    • /
    • pp.145-153
    • /
    • 2022
  • Mercury (Hg) is a major concern in marine environment because of their bioaccumulation and biomagnification properties, and adverse effects to aquatic organisms at even a trace amount. However, little information on the effects of Hg, compared to other heavy metals, is available in marine small crustaceans. Here, we investigated the transcriptional modulation of metabolism-related genes in the brackish water flea, Diaphanosoma celebensis after exposure to sublethal concentration (0.2, 0.4, 0.8 ㎍/l) of HgCl2 for 48 h. Relative mRNA expression levels of five detoxification enzyme-coding genes (cytochrome P450; cyp360A1, cyp361A1, cyp4AP3, cyp4C122, and cyp370C5) and six digestive enzyme-coding genes [alpha amylase (AMY), alpha amylase related protein (AMY-like), trypsin (TRYP), chymotrypsin-like protein (CHY), lipase (LIP), pancreatic lipase-related protein (PLRP)] were analyzed using quantitative real time reverse transcription polymerase chain reaction (qRT-PCR). As results, Hg increased the mRNA level of cyp370C5 (clan2) and cyp4AP3 (clan4) in a concentration dependent manner. A significant increase in TRYP mRNA was also concentration-dependently observed after exposure to Hg. These findings suggest that cyp370C5 and cyp4AP3 play a key role in Hg detoxification in D. celebensis, and Hg can affect energy metabolism by modulating the transcription of digestive enzyme. This study will provide better understanding the molecular effects of Hg in marine small crustacean.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads (기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상)

  • Min Jeong Jeon;Je-Won Yoo;Young-Mi Lee
    • Journal of Marine Life Science
    • /
    • v.8 no.2
    • /
    • pp.104-114
    • /
    • 2023
  • As plastic usage increases globally, the amount of plastic waste entering the marine environment is steadily rising. Microplastics, in particular, can be ingested by marine organisms and accumulated in their digestive tracts, causing harmful effects on their growth and reproduction. Cytochrome P450 (CYP) enzymes are known to metabolize various environmental pollutants as detoxification enzymes, but their role in crustaceans is not well understood. In this study, sequences of nine CYP genes (CYP370A4, CYP370C5 from clan 2; CYP350A1, CYP350C5, CYP361A1 from clan 3; CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1 from clan 4) were analyzed using conserved domains in the brackish water flea Diaphanosoma celebensis. Additionally, after exposure to three different sizes of polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L) for 48 hours, the expression of these nine CYP genes were investigated using real-time reverse transcription polymerase chain reaction (RT-PCR). The results showed that all CYP genes possessed conserved motifs, indicating that D. celebensis CYP has evolutionarily conserved functions. Among these CYP genes, the expression of CYP370C5, CYP360A1, and CYP4C122 showed a significant increase after exposure to 0.05-㎛ PS beads, suggesting their involvement in PS metabolism. This research will contribute to understanding the molecular mode of actions of microplastics on marine invertebrates.

Stimulation of Trout CYP1A Gene Expression in Mouse HEPA-1 Cells by 3-Methylcholanthrene

  • Lee, Soo-Young;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.20 no.5
    • /
    • pp.404-409
    • /
    • 1997
  • Trout CYP1A-CAT expression construct was generated by cloning -3.5 Kb $5^I$ flanking DNA of trout liver CYP1A gene in front of CAT gene at pCAT-basic vector. Hepa 1 cells, which are known to contain a functional arylhydrbcarbon $receptor^I$ were transfected with trout CYP1A-CAT using lipofectin. 3-Methylcholanthrene (1 nM) was added into hepa 1 cells in culture in order to examine if $5^I$ flanking DNA of trout CYP1A gene could interact with mouse transactivating factors to bring about transcription of the chloramphenicol acetyltransferase(CAT) reporter gene. The level of CAT protein was measured by CAT ELISA and the level of CAT mRNA was determined by RTPCR. The treatment of 1 nM 3-methylcholanthrene resulted in two fold increases in CAT protein as well as CAT mRNA compared to untreated control hepa 1 cells. These data indicate that arylhydrocarbon receptors of mouse hepa 1 cells are functional to activate exogenously transfected trout CYP1A-CAT construct in terms of both transcription and translation of CAT. We also examined the effect of 3-methylcholanthrene on endogenous cyplal activity in hepa 1 cell. 3-Methylcholanthrene (1 nM) treatment to hepa 1 cells trahsfected with trout CYP1A-CAT construct stimulated the level of cyp1a1 mRNA by two folds and the activity of ethoxyresorufin-O-deethylase by two fold compared to that of control cells. In this study we reported that trout CYP1A-CAT reporter gene expression construct could be expressed by 3-methylcholanthrene treatment in mouse hepa 1 cells. Thus trout CYP1A-CAT could serve as a good model to study the mechanism of regulation of CYP1A1 gene expression.

  • PDF

Purification and Characterization of the Rat Liver CYP2D1 and Utilization of Reconstituted CYP2D1 in Caffeine Metabolism

  • Chung, Woon-Gye;Cho, Myung-Haing;Cha, Young-Nam
    • Toxicological Research
    • /
    • v.13 no.1_2
    • /
    • pp.117-125
    • /
    • 1997
  • In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.

  • PDF

Importance of Cytochrome P450 3A4 Conformation for the Activity Stimulation by Cytochrome b5 : Specific Inhibition of Cytochrome P450 3A4 by Zinc (II) Ion

  • Kim, Joon-Sik;Yun, Chul-Ho
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.149.3-150
    • /
    • 2003
  • CYP3A4 is the most abundant human CYP and oxidizes a diversity of substrates. including various drugs. steroids. and carcinogens. A variety of metal ions are known to affect microsomal monooxygenase activities. Effects of a series of divalent metal ions on the CYP3A4-catalyzed reaction of reconstituted system containing purified CYP3A4. NADPH-P450 reductase (NPR), and cytochrome b5 (b5) were examined. (omitted)

  • PDF

RNA Expression of Cytochrome P450 in Mexican Women with Breast Cancer

  • Bandala, Cindy;Floriano-Sanchez, E.;Cardenas-Rodriguez, N.;Lopez-Cruz, J.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.6
    • /
    • pp.2647-2653
    • /
    • 2012
  • Involvement of cytochrome P450 genes (CYPs) in breast cancer (BCa) may differ between populations, with expression patterns affected by tumorigenesis. This may have an important role in the metabolism of anticancer drugs and in the progression of cancer. The aim of this study was to determine the mRNA expression patterns of four cytochrome P450 genes (CYP2W1, 3A5, 4F11 and 8A1) in Mexican women with breast cancer. Real-time PCR analyses were conducted on 32 sets of human breast tumors and adjacent non-tumor tissues, as well as 20 normal breast tissues. Expression levels were tested for association with clinical and pathological data of patients. We found higher gene expression of CYP2W1, CYP3A5, CYP4F11 in BCa than in adjacent tissues and only low in normal mammary glands in our Mexican population while CYP8A1 was only expressed in BCa and adjacent tissues. We found that Ki67 protein expression was associated with clinicopathological features as well as with CYP2W1, CYP4F11 and CYP8A1 but not with CYP3A5. The results indicated that breast cancer tissues may be better able to metabolize carcinogens and other xenobiotics to active species than normal or adjacent non-tumor tissues.

Screening of Genetic Polymorphisms of CYP3A4 and CYP3A5 Genes

  • Lee, Jin Sol;Cheong, Hyun Sub;Kim, Lyoung Hyo;Kim, Ji On;Seo, Doo Won;Kim, Young Hoon;Chung, Myeon Woo;Han, Soon Young;Shin, Hyoung Doo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.6
    • /
    • pp.479-484
    • /
    • 2013
  • Given the CYP3A4 and CYP3A5's impact on the efficacy of drugs, the genetic backgrounds of individuals and populations are regarded as an important factor to be considered in the prescription of personalized medicine. However, genetic studies with Korean population are relatively scarce compared to those with other populations. In this study, we aimed to identify CYP3A4/5 polymorphisms and compare the genotype distributions among five ethnicities. To identify CYP3A4/5 SNPs, we first performed direct sequencing with 288 DNA samples which consisted of 96 Koreans, 48 European-Americans, 48 African-Americans, 48 Han Chinese, and 48 Japanese. The direct sequencing identified 15 novel SNPs, as well as 42 known polymorphisms. We defined the genotype distributions, and compared the allele frequencies among five ethnicities. The results showed that minor allele frequencies of Korean population were similar with those of the Japanese and Han Chinese populations, whereas there were distinct differences from European-Americans or African-Americans. Among the pharmacogenetic markers, frequencies of $CYP3A4^*1B$ (rs2740574) and $CYP3A5^*3C$ (rs776742) in Asian groups were different from those in other populations. In addition, minor allele frequency of $CYP3A4^*18$ (rs28371759) was the highest in Korean population. Additional in silico analysis predicted that two novel non-synonymous SNPs in CYP3A5 (+27256C>T, P389S and +31546T>G, I488S) could alter protein structure. The frequency distributions of the identified polymorphisms in the present study may contribute to the expansion of pharmacogenetic knowledge.