Browse > Article
http://dx.doi.org/10.5487/TR.2017.33.3.211

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells  

Park, Young-Shin (College of Pharmacy, Chung-Ang University)
Kwon, Yeo-Jung (College of Pharmacy, Chung-Ang University)
Chun, Young-Jin (College of Pharmacy, Chung-Ang University)
Publication Information
Toxicological Research / v.33, no.3, 2017 , pp. 211-218 More about this Journal
Abstract
Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.
Keywords
CYP1B1; ${\beta}-Catenin$; Herc-5; ISGylation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gribben, J.G., Ryan, D.P., Boyajian, R., Urban, R.G., Hedley, M.L., Beach, K., Nealon, P., Matulonis, U., Campos, S., Gilligan, T.D., Richardson, P.G., Marshall, B., Neuberg, D. and Nadler, L.M. (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin. Cancer Res., 11, 4430-4436.   DOI
2 Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. and Sutter, T.R. (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res., 56, 2979-2984.
3 Murray, G.I., Taylor, M.C., McFadyen, M.C., McKay, J.A., Greenlee, W.F., Burke, M.D. and Melvin, W.T. (1997) Tumorspecific expression of cytochrome P450 CYP1B1. Cancer Res., 57, 3026-3031.
4 Tsuchiya, Y., Nakajima, M., Kyo, S., Kanaya, T., Inoue, M. and Yokoi, T. (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res., 64, 3119-3125.   DOI
5 Goodin, M.G., Fertuck, K.C., Zacharewski, T.R. and Rosengren, R.J. (2002) Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci., 69, 354-361.   DOI
6 Nakajima, M., Iwanari, M. and Yokoi, T. (2003) Effects of histone deacetylation and DNA methylation on the constitutive and TCDD-inducible expressions of the human CYP1 family in MCF-7 and HeLa cells. Toxicol. Lett., 144, 247-256.   DOI
7 Heidel, S.M., Czuprynski, C.J. and Jefcoate, C.R. (1998) Bone marrow stromal cells constitutively express high levels of cytochrome P4501B1 that metabolize 7,12-dimethylbenz[a]anthracene. Mol. Pharmacol., 54, 1000-1006.   DOI
8 Chun, Y.J. and Kim, S. (2003) Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Med. Res. Rev., 23, 657-668.   DOI
9 Yang, X., Zhang, B., Molony, C., Chudin, E., Hao, K., Zhu, J., Gaedigk, A., Suver, C., Zhong, H., Leeder, J.S., Guengerich, F.P., Strom, S.C., Schuetz, E., Rushmore, T.H., Ulrich, R.G., Slatter, J.G., Schadt, E.E., Kasarskis, A. and Lum, P.Y. (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res., 20, 1020-1036.   DOI
10 Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxman, D.J., Waterman, M.R., Gotoh, O., Coon, M.J., Estabrook, R.W., Gunsalus, I.C. and Nebert, D.W. (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6, 1-42.   DOI
11 Shimada, T. (2017) Inhibition of carcinogen-activating cytochrome P450 enzymes by xenobiotic chemicals in relation to antimutagenicity and anticarcinogenicity. Toxicol. Res., 33, 79-96.   DOI
12 Clevers, H. (2006) Wnt/${\beta}$-catenin signaling in development and disease. Cell, 127, 469-480.   DOI
13 Saini, S., Hirata, H., Majid, S. and Dahiya, R. (2009) Functional significance of cytochrome P450 1B1 in endometrial carcinogenesis. Cancer Res., 69, 7038-7045.   DOI
14 Delvoux, B., Groothuis, P., D'Hooghe, T., Kyama, C., Dunselman, G. and Romano, A. (2009) Increased production of $17{\beta}$-estradiol in endometriosis lesions is the result of impaired metabolism. J. Clin. Endocrinol. Metab., 94, 876-883.   DOI
15 Chun, Y.J., Lee, S.K. and Kim, M.Y. (2005) Modulation of human cytochrome P450 1B1 expression by 2,4,3',5'-tetramethoxystilbene. Drug Metab. Dispos., 33, 1771-1776.
16 Zou, W., Papov, V., Malakhova, O., Kim, K.I., Dao, C., Li, J. and Zhang, D.E. (2005) ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun., 336, 61-68.   DOI
17 Piotrowska, H., Kucinska, M. and Murias, M. (2013) Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines. Mol. Cell. Biochem., 383, 95-102.   DOI
18 Barnett, J.A., Urbauer, D.L., Murray, G.I., Fuller, G.N. and Heimberger, A.B. (2007) Cytochrome P450 1B1 expression in glial cell tumors: an immunotherapeutic target. Clin. Cancer Res., 13, 3559-3567.   DOI
19 Akiyama, T. (2000) Wnt/${\beta}$-catenin signaling. Cytokine Growth Factor Rev., 11, 273-282.   DOI
20 Konigshoff, M. and Eickelberg, O. (2010) WNT signaling in lung disease: a failure or a regeneration signal? Am. J. Respir. Cell Mol. Biol., 42, 21-31.   DOI
21 Kim, W., Kim, M. and Jho, E.H. (2013) Wnt/${\beta}$-catenin signalling: from plasma membrane to nucleus. Biochem. J., 450, 9-21.   DOI
22 Lee, J., Li, L., Gretz, N., Gebert, J. and Dihlmann, S. (2012) Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLADRB gene expression in colorectal cancers. Oncogene, 31, 1242-1253.   DOI
23 Narasimhan, J., Wang, M., Fu, Z., Klein, J.M., Haas, A.L. and Kim, J.J. (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem., 280, 27356-27365.   DOI
24 Dastur, A., Beaudenon, S., Kelley, M., Krug, R.M. and Huibregtse, J.M. (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem., 281, 4334-4338.   DOI
25 Shi, H.X., Yang, K., Liu, X., Liu, X.Y., Wei, B., Shan, Y.F., Zhu, L.H. and Wang, C. (2010) Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol., 30, 2424-2436.   DOI
26 Cruz, C., Ventura, F., Bartrons, R. and Rosa, J.L. (2001) HERC3 binding to and regulation by ubiquitin. FEBS Lett., 488, 74-80.   DOI
27 Skaug, B. and Chen, Z.J. (2010) Emerging role of ISG15 in antiviral immunity. Cell, 143, 187-190.   DOI
28 Durfee, L.A., Lyon, N., Seo, K. and Huibregtse, J.M. (2010) The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell, 38, 722-732.   DOI
29 Hochrainer, K., Mayer, H., Baranyi, U., Binder, B., Lipp, J. and Kroismayr, R. (2005) The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics, 85, 153-164.   DOI
30 Wong, J.J., Pung, Y.F., Sze, N.S. and Chin, K.C. (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. U.S.A., 103, 10735-10740.   DOI
31 Kroismayr, R., Baranyi, U., Stehlik, C., Dorfleutner, A., Binder, B.R. and Lipp, J. (2004) HERC5, a HECT E3 ubiquitin ligase tightly regulated in LPS activated endothelial cells. J. Cell Sci., 117, 4749-4756.   DOI
32 Liu, C., Kato, Y., Zhang, Z., Do, V.M., Yankner, B.A. and He, X. (1999) ${\beta}$-Trcp couples ${\beta}$-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. U.S.A., 96, 6273-6278.   DOI
33 Lee, J.H., Bae, J.A., Lee, J.H., Seo, Y.W., Kho, D.H., Sun, E.G., Lee, S.E., Cho, S.H., Joo, Y.E., Ahn, K.Y., Chung, I.J. and Kim, K.K. (2010) Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/${\beta}$-catenin signal via ISGylation of ${\beta}$-catenin. Gut, 59, 907-917.   DOI