• 제목/요약/키워드: CYP3A11

검색결과 60건 처리시간 0.027초

Transgenic expression of rice MYB102 (OsMYB102) delays leaf senescence and decreases abiotic stress tolerance in Arabidopsis thaliana

  • Piao, Weilan;Sakuraba, Yasuhito;Paek, Nam-Chon
    • BMB Reports
    • /
    • 제52권11호
    • /
    • pp.653-658
    • /
    • 2019
  • MYB-type transcription factors (TFs) play important roles in plant growth and development, and in the rapid responses to unfavorable environmental conditions. We recently reported the isolation and characterization of a rice (Oryza sativa) MYB TF, OsMYB102, which is involved in the regulation of leaf senescence by downregulating abscisic acid (ABA) biosynthesis and the downstream signaling response. Based on the similarities of their sequences and expression patterns, OsMYB102 appears to be a homolog of the Arabidopsis thaliana AtMYB44 TF. Since AtMYB44 is a key regulator of leaf senescence and abiotic stress responses, it is important to examine whether AtMYB44 homologs in other plants also act similarly. Here, we generated transgenic Arabidopsis plants expressing OsMYB102 (OsMYB102-OX). The OsMYB102-OX plants showed a delayed senescence phenotype during dark incubation and were more susceptible to salt and drought stresses, considerably similar to Arabidopsis plants overexpressing AtMYB44. Real-time quantitative PCR (RT-qPCR) revealed that, in addition to known senescence-associated genes, genes encoding the ABA catabolic enzymes AtCYP707A3 and AtCYP707A4 were also significantly upregulated in OsMYB102-OX, leading to a significant decrease in ABA accumulation. Furthermore, protoplast transient expression and chromatin immunoprecipitation assays revealed that OsMYB102 directly activated AtCYP707A3 expression. Based on our findings, it is probable that the regulatory functions of AtMYB44 homologs in plants are highly conserved and they have vital roles in leaf senescence and the abiotic stress responses.

Metabolic Activation of Marijuana Constituents, Cannabinoids, in Relation to Their Toxicity for Human and Its Oxidation Mechanism

  • Ikuo, Yamamoto
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.194-199
    • /
    • 2002
  • Many oxidative metabolites of tetrahydrocannabinols (THCs), active components of marijuana, were pharmacologically active, and 11-hydroxy-THCs, 11-oxo-${\Delta}^8$-THC, 7-oxo-${\Delta}^8$-THC, 8$\beta$, 9$\beta$-epoxyhexahydrocannabinol (EHHC), 9$\alpha$, l0$\alpha$-EHHC and 3'-hydroxy-${\Delta}^9$-THC were more active than THC in pharmacological effects such as catalepsy, hypothermia and barbiturate synergism in mice. Cannabidiol (CBD), another major component, was biotransfomred to two novel metabolites, 6-hydroxymethyl-${\Delta}^9$-THC and 3-pentyl-6, 7, 7a, 8, 9, lla-hexahydro-I, 7-dihydroxy-7, 1O-dimethyldibenzo[b, d]oxepin (PHDO) through 8R, 9-epoxy-CBD and 85, 9-epoxy-CBD, respectively. Both metabolites exhibited some pharmacological effects comparable to d9 - THe. Cannabinol (CBN), the other major component, was mainly metabolized to ll-hydroxy-CBN by hepatic microsomes of animals including humans. The pharmacological effects of the metabolite were higher than those of CBN demonstrating that II-hydroxylation of CBN is metabolic activation pathway of the cannabinoid as is the case in THCs. Tolerance and reciprocal cross-tolerance developed to pharmacological effects d8 - THC and ll-hydroxy-d8-THC , and the magnitude of tolerance development produced by the metabolite was significantly higher than that by d8-THC. The results indicate that ll-hydroxy-d8-THC has an important role not only in the pharmacological effects but also its tolerance development of d8 - THe. THCs and their metabolites competed to the specific binding of CP-55, 940, an agonist of cannabinoid receptor, to synaptic membrane from bovine cerebral cortex. The Ki value of THCs and their metabolites were closely paralleled to their pharmacological effects in mice. A novel cytochrome P450 (cyp2c29) was purified and identified as a major enzyme responsible for the metabolic activation of d8-THC at the II-position in the mouse liver. cDNA of CYP2C29 was cloned from a mouse cDNA library and its sequence was determined. The oxidation mechanism of THC by cyp2c29 was proposed.

  • PDF

High Efficacy of Levofloxacin-Dexlansoprazole-Based Quadruple Therapy as a First Line Treatment for Helicobacter pylori Eradication in Thailand

  • Prapitpaiboon, Hatainuch;Mahachai, Varocha;Vilaichone, Ratha-Korn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권10호
    • /
    • pp.4353-4356
    • /
    • 2015
  • Background: Levofloxacin is an effective medication for second line Helicobacter pylori (H. pylori) eradication. However, limited studies have approved its use as an effective antibiotic in first line therapy. Dexlansoprazole is a new PPI and lacks of evidence in support of a role in H. pylori eradication. This study was designed to evaluate efficacy of levofloxacin-dexlansoprazole-based quadruple therapy for H. pylori eradication in Thailand. Materials and Methods: This prospective randomized control study was performed during June 2014 to December 2014. H. pylori infected gastritis patients were randomized to receive 7- or 14-day levofloxacin-dexlansoprazole based on quadruple therapy (levofloxacin 500 mg OD, dexlansoprazole 60 mg bid, clarithromycin MR 1000 mg OD, bismuth subsalicylate 1048 mg bid). CYP2C19 genotyping and antibiotic susceptibility tests were conducted for all patients. A 13C urea breath test was performed to confirm H. pylori eradication at least 4 weeks after treatment. Results: A total of 100 patients were enrolled, comprising 44 males and 56 females (mean age of 52.6 years). Eradication rate by PP analysis was 85.7% (42/49) with the 7-day regimen and 98% (48/49) with the 14-day regimen (85.7% vs 98%; p-value=0.059). ITT analysis was 84% and 96% with 7- and 14-day regimens, respectively (84% vs 96%; p-value=0.092). Antibiotic susceptibility testing demonstrated 35.1% resistance to metronidazole, 18.3% to clarithromycin, and 13.5% to levofloxacin. CYP2C19 genotyping revealed 54.1% RM, 34.7% IM and 11.2% PM. The 14-day regimen provided 100% eradication in patients with clarithromycin or dual clarithromycin and metronidazole H. pylori resistant strains. Moreover, the eradication rate was 96.6% in patients with CYP2C19 genotype RM. Conclusions: The 14-day levofloxacin-dexlansoprazole based quadruple therapy provides high H. pylori eradication regardless of CYP2C19 genotype, clarithromycin or dual clarithromycin and metronidazole resistant strains. This regimen could be use as an alternative first line therapy for H. pylori eradication in Thailand.

지방세포 분화중인 3T3-L1 세포에서 아로마테이즈 siRNA 처리에 의한 지방관련 유전자와 전사인자의 발현 조절 (Adipocyte-Related Genes and Transcription Factors were Affected by siRNA for Aromatase Gene during 3T3-L1 Differentiation)

  • 정동기
    • 생명과학회지
    • /
    • 제18권11호
    • /
    • pp.1600-1605
    • /
    • 2008
  • 본 연구는 에스트로겐 생성효소 유전자인 아로마테이즈 유전자의 siRNA를 이용하여 지방전구세포인 3T3-L1 세포의 지방세포 분화 시 나타나는 유전자의 발현을 검증하기 위하여 수행하였다. 먼저, CYP19A1 (aromatase)의 유전자로부터 siRNA를 3쌍을 디자인하고 이를 지방세포의 전구세포인 3T3-L1세포에 유전자 전이 한 후 분화 유도를 통하여 지방세포 생성의 메커니즘을 분석하였다. 결과적으로 비만의 원인 유전자인 렙틴 유전자의 발현 억제를 유도할 수 있었으며 특이적으로 인슐린과의 연관성이 매우 높음을 밝혀 낼 수 있었다. 그리고 비만 또는 백색지방 생성 시 발현이 억제되는 adiponectin과 adipsin의 과발현을 관찰할 수 있었다. 이 결과를 통하여 지방생성의 모든 신호전달체계 중 특정 한 물질을 저해 하므로써 큰 부작용 없이 비만의 문제가 되는 지방생성을 일정 정도 제어 할 수 있음을 확인 할 수 있었다. 그러므로 이 결과는 앞으로 에스트로겐 결핍 또는 과발현에 의하여 문제가 되는 지방생성 메커니즘을 밝히는 연구에 중요한 단서가 될 것으로 기대된다.

선학초 (짚신나물) 복강주사의 항암효과 탐색 및 약물 대사효소의 변화 (The Anticancer Effects and Drug Metabolic Enzyme Change by Intraperitoneal Injection of Agrimonia Pilosa Ledeb)

  • 최정원;장보형;이주아;고호연;정희;전찬용;박종형;김지혜;고성규;최유경
    • 대한한의학회지
    • /
    • 제30권4호
    • /
    • pp.129-141
    • /
    • 2009
  • Objective: This study was to investigate the anti-tumor effect, safety, safety, mechanism and metabolizing enzyme of Agrimonia pilosa LEDEB (APL) in female C57B/L mouse tumor (in vivo). Method: First, to evaluate the antitumor activity of APL, we divided the mice into four groups: normal, control, APL50 (50mg/kg), and APL100 (100mg/kg). LLC-obtained American Type Culture Collection was used. LLC had been inoculated to induce tumors. To measure the anti-tumor effect of APL, we calibrated tumor size and weight. To analyze the mechanism of anti-tumor in APL, we used western blotting and to observe metabolizing enzyme in APL we used to real-time PCR. Result: APL50 and APL100 significantly inhibited tumor growth from 12 days after medicine injected. APL did not induce caspase-dependent apoptosis in LLC-bearing mouse tumor. In APL100, it decreased 41% and 71% in CYP2D22 and CYP3A11, respectively. Conclusion: These results suggest that APL has some anti-tumor effects in female C57B/L mouse tumor. APL should be used carefully with other drugs related with CYP2D22 and CYP3A11.

  • PDF

Taxonomy of Yellow koji mold (Aspergillus flavus/oryzae) in Korea

  • Hong, Seung-Beom;Lee, Mina;Kim, Dae-Ho;Chung, Soo-Hyun;Samson, Robert A.
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 춘계학술대회 및 임시총회
    • /
    • pp.25-25
    • /
    • 2014
  • Koji molds are comprised of yellow, black and white. Black and white koji molds were recently re-visited by this author and it is concluded that they consists of Aspergillus luchuesnsis, A. niger and A. tubingensis, and the most important species for alcoholic beverage production is A. luchuensis. In the case of yellow koji mold, it is comprised of Aspergillus oryzae, A. sojae and A. tamari. In the case of A. sojae, the species is scarcely isolated from nature and rarely used for industry in Korea. Aspergillus tamari is often isolated from traditional Korean Meju, a fermented soybean product, and the classification of the species is clear. However, in the case of A. oryzae, differentiation between A. oryzae and A. flavus is still in controversy. In this study, we collected 415 strains of Aspergillus flavus/oryzae complex from air, rice straw, soybean, corn, peanut, arable soil and Meju in Korea and we examined the aflatoxin producing capacity of the strains. The norB-cypA, omtA and aflR genes in the aflatoxin biosynthesis gene cluster were analyzed. We found that 367 strains (88.4%) belonged to non-aflatoxigenic group (Type I of norB-cypA, IB-L-B-, IC-AO, or IA-L-B- of omtA, and AO type of aflR), and only 48 strains (11.6%) belonged to aflatoxin-producible group (Type II of norB-cypA, IC-L-B+/B- or IC-L-B+ of omtA, and AF type of aflR). In the case of A. flavus/oryzae strains from Meju, almost strains (178/192, 92.7%) belonged to non-aflatoxigenic group and only 14 strains (7.3 %) belonged to aflatoxin-producible group. It is proposed in this study that non-aflatoxigenic strain from Meju is classified as A. oryzae, considering that Meju is food material.

  • PDF

The effects of the standardized extracts of Ginkgo biloba on steroidogenesis pathways and aromatase activity in H295R human adrenocortical carcinoma cells

  • Kim, Mijie;Park, Yong Joo;Ahn, Huiyeon;Moon, Byeonghak;Chung, Kyu Hyuck;Oh, Seung Min
    • Environmental Analysis Health and Toxicology
    • /
    • 제31권
    • /
    • pp.10.1-10.8
    • /
    • 2016
  • Objectives Aromatase inhibitors that block estrogen synthesis are a proven first-line hormonal therapy for postmenopausal breast cancer. Although it is known that standardized extract of Ginkgo biloba (EGb761) induces anti-carcinogenic effects like the aromatase inhibitors, the effects of EGb761 on steroidogenesis have not been studied yet. Therefore, the effects of EGb761 on steroidogenesis and aromatase activity was studied using a H295R cell model, which was a good in vitro model to predict effects on human adrenal steroidogenesis. Methods Cortisol, aldosterone, testosterone, and $17{\beta}$-estradiol were evaluated in the H295R cells by competitive enzyme-linked immunospecific assay after exposure to EGb761. Real-time polymerase chain reaction were performed to evaluate effects on critical genes in steroid hormone production, specifically cytochrome P450 (CYP11/ 17/19/21) and the hydroxysteroid dehydrogenases ($3{\beta}$-HSD2 and $17{\beta}$-HSD1/4). Finally, aromatase activities were measured with a tritiated water-release assay and by western blotting analysis. Results H295R cells exposed to EGb761 (10 and $100{\mu}g/mL$) showed a significant decrease in $17{\beta}$-estradiol and testosterone, but no change in aldosterone or cortisol. Genes (CYP19 and $17{\beta}$-HSD1) related to the estrogen steroidogenesis were significantly decreased by EGb761. EGb761 treatment of H295R cells resulted in a significant decrease of aromatase activity as measured by the direct and indirect assays. The coding sequence/Exon PII of CYP19 gene transcript and protein level of CYP19 were significantly decreased by EGb761. Conclusions These results suggest that EGb761 could regulate steroidogenesis-related genes such as CYP19 and $17{\beta}$-HSD1, and lead to a decrease in $17{\beta}$-estradiol and testosterone. The present study provides good information on potential therapeutic effects of EGb761 on estrogen dependent breast cancer.

항안드로겐성 물질이 성 성숙 이전 단계의 정소에서 미치는 영향 연구 (Early Exposure to Anti-androgen Compounds Induces the Delay in the Testis Development in Immature Male Rat)

  • 홍진;한순영;문현주;강태석;강일현;김태성;김승희;권기성
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권3호
    • /
    • pp.291-299
    • /
    • 2006
  • The experiments investigated whether early exposure to testosterone propionate (TP) during prepuberty alters testis development in Sprague-Dawley male rats. We performed Hershberger assay using the stimulated weanling male rats by OECD protocols, cDNA microarray, and Western blot. TP was subcutaneously injected to uncastrated Sprague-Dawley male rat of 22 days old for 10 consecutive days at doses of 0.4, 0.8, 1.0, 1.2, 1.6 mg/kg per day. At necropsy, the following tissues were removed and weighed: combined testes, epididymides (Epi), Cowper's glands (COW), levator am, and bulbocavernosus muscles (LABC), seminal vesicles, together with coagulating gland (SV) and ventral prostate (VP). We found that TP increased the weights of Epi, VP, SV, COW, and LABC, while testis was decreased in a dose-dependent manner. In cDNA microarray analysis of testis, there were significant reductions in the expression of cytochrome P450 11A (CYP11A), the rate-limiting enzyme of steroidogenesis. Taken together these results, TP exposure before puberty in male rats may produce the delay in testis development by inhibiting the CYP11A gene expression.

Effect of Lipopolysaccharide (LPS) Exposure on the Reproductive Organs of Immature Female Rats

  • Yoo, Da Kyung;Lee, Sung-Ho
    • 한국발생생물학회지:발생과생식
    • /
    • 제20권2호
    • /
    • pp.91-99
    • /
    • 2016
  • Lipopolysaccharide (LPS), an endotoxin, elicits strong immune responses in mammals. Several lines of evidence demonstrate that LPS challenge profoundly affects female reproductive function. For example, LPS exposure affects steroidogenesis and folliculogenesis, resulting in delayed puberty onset. The present study was conducted to clarify the mechanism underlying the adverse effect of LPS on the delayed puberty in female rats. LPS was daily injected for 5 days ($50{\mu}g/kg$, PND 25-29) to treated animals and the date at VO was evaluated through daily visual examination. At PND 39, animals were sacrificed, and the tissues were immediately removed and weighed. Among the reproductive organs, the weights of the ovaries and oviduct from LPS-treated animals were significantly lower than those of control animals. There were no changes in the weights of uterus and vagina between the LPS-treated and their control animals. immunological challenge by LPS delayed VO. Multiple corpora lutea were found in the control ovaries, indicating ovulations were occurred. However, none of corpus luteum was present in the LPS-treated ovary. The transcription level of steroidogenic acute regulatory protein (StAR), CYP11A1, CYP17A1 and CYP19 were significantly increased by LPS treatment. On the other hand, the levels of $3{\beta}$-HSD, $17{\beta}$-HSD and LH receptor were not changed by LPS challenge. In conclusion, the present study demonstrated that the repeated LPS exposure during the prepubertal period could induce multiple alterations in the steroidogenic machinery in ovary, and in turn, delayed puberty onset. The prepubertal LPS challenge model used in our study is useful to understand the reciprocal regulation of immune (stress) - reproductive function in early life.

비만 유전자 단일 염기 다형성 문헌 고찰 (A literature Review of Single Nucleotide Polymorphisms in Obesity Genes)

  • 김성수;송희옥
    • 한방비만학회지
    • /
    • 제4권1호
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF