• 제목/요약/키워드: CYP2C8

검색결과 89건 처리시간 0.021초

유묘기 양배추류에서 메틸자스모네이트에 의한 글루코시놀레이트 함량 변화 및 전사체 발현 분석 (Effect of methyl jasmonate on the glucosinolate contents and whole genome expression in Brassica oleracea)

  • 이정여;민성란;정재은;김혜란
    • Journal of Plant Biotechnology
    • /
    • 제46권3호
    • /
    • pp.189-204
    • /
    • 2019
  • 본 연구의 목적은 유묘기 TO1000DH3와 Early big에서 MeJA 처리에 의해 글루코시놀레이트 함량 변화 및 유전자의 발현 변화를 분석하기 위하여 수행되었다. $200{\mu}M$ 농도의 MeJA를 처리하여 글루코시놀레이트 함량을 분석한 결과, 글루코시놀레이트 총 함량이 처리 전보다 TO1000DH3에서 1.3~1.5배, Early big에서 1.3 ~ 3.8배 증가하였다. 알리패틱 글루코시놀레이트인 progoitrin과 gluconapin은 TO1000DH3에서만 검출되었으며, neoglucobrassicin 성분의 함량 변화가 MeJA 처리 48시간 후 TO1000DH3와 Early big에서 가장 크게 증가되었다. 전사체 분석을 통해 TO1000DH3에서는 stress나 defense 반응에 관여하거나, 생장과 관련된 전사체가 특이적으로 발현하고, Early big에서는 nucleoside 또는 ATP 생합성 관련 전사체가 특이적으로 발현하는 것을 알 수 있었다. MeJA를 처리함에 따라 발현이 2배 이상 변한 전사체를 TO1000DH3에서 12,020개, Early big에서 13,510개를 선발하여 GO 분석한 결과 stimulus, chemical에 반응하는 전사체의 발현이 공통적으로 증가하였고, single-organism 및 ribosome 합성 관련 전사체의 발현이 공통적으로 감소하였다. 특히 glucobrassicin, neoglucobrassicin 함량과 연관되어 발현이 증가한 인돌릭 글루코시놀레이트 생합성 관련 전사체의 발현이 모두 증가하였다 (MYB34 (Bo7g098110), IGMT2 (Bo8g070650), CYP81D1 (Bo6g056440), CYP81D4 (Bo7g118500), CYP81F4 (Bo1g004730, Bo01007s020), CYP81G1 (Bo4g154660), CYP83B1 (Bo8g024390) 및 CYP91A2 (Bo1g003710)). 글루코시놀레이트 생합성 경로 관련 유전자를 대표하는 전사체 104개를 선발하여 발현 양상을 분석한 결과 transcription factor에 속하는 MYB28, MYB51의 발현은 MeJA 처리 전에 비해 처리 후 발현양이 감소하였지만, 대부분의 전사체의 발현은 MeJA 처리에 의해 증가하였다. MeJA 처리에 의해 AOP3 (Bo9g006220, Bo9g006240), TGG1 (Bo14804s010)는 TO1000DH3에서만 특이적으로 발현이 증가하였고, Dof1.1 (Bo5g008360), UGT74C1 (Bo4g177540), GSL-OH (Bo4g173560, Bo4g173550, Bo4g173530)는 Early big 특이적으로 발현이 증가하였다. MeJA 처리 전 두 계통에서 발현이 가장 높은 글루코시놀레이트 생합성 관련 유전자는 GSTU20이었고, MeJA 처리에 의해 12시간 후TO1000DH3에서 CYP79B2 (Bo7g118840), Early big에서는 CYP79B3 (Bo4g149550)의 발현이 가장 많이 증가하였다.

Differential Metabolism of the Pyrrolizidine Alkaloid, Senecionine, in Fischer 344 and Sprague-Dawley Rats

  • Chung, Woon-Gye;Donald R. Buhler
    • Archives of Pharmacal Research
    • /
    • 제27권5호
    • /
    • pp.547-553
    • /
    • 2004
  • The pyrrolizidine alkaloids (PAs), contained in a number of traditional remedies in Africa and Asia, show wide variations in metabolism between animal species but little work has been done to investigate differences between animal strains. The metabolism of the PA senecionine (SN) in Fischer 344 (F344) rats has been studied in order to compare to that found in the previously investigated Sprague-Dawley (SO) rats (Drug Metab. Dispos. 17: 387, 1989). There was no difference in the formation of ($\pm$) 6,7-dihydro-7-hydroxy-1-hydroxymethyl-5H-pyrrolizine (DHP, bioactivation) by hepatic microsomes from either sex of SO and F344 rats. However, hepatic microsomes from male and female F344 rats had greater activity in the Noxidation (detoxication) of SN by 88% and 180%, respectively, when compared to that of male and female SD rats. Experiments conducted at various pH showed an optimum pH of 8.5, the optimal pH for flavin-containing monooxygenase (FMO), for SN N-oxidation by hepatic microsomes from F344 females. In F344 males, however, a bimodal pattern was obtained with activity peaks at pH 7.6 and 8.5 reflecting the possible involvement of both cytochrome P450 (CYP) and FMO. Use of specific inhibitors (SKF525A, 1-benzylimidazole and methimazole) showed that the N-oxide of SN was primarily produced by FMO in both sexes of F344 rats. In contrast, SN N-oxide formation is known to be catalyzed mainly by CYP2C11 rather than FMO in SD rats. This study, therefore, demonstrated that there were substantial differences in the formation of SN N-oxide by hepatic microsomes from F344 and SD rats and that this detoxification is catalyzed primarily by two different enzymes in the two rat strains. These findings suggest that significant variations in PA biotransformation can exist between different animal strains.

Association of Cytochrome-17 (MspA1) Gene Polymorphism with Risk of Gall Bladder Stones and Cancer in North India

  • Dwivedi, Shipra;Agrawal, Sarita;Singh, Shraddha;Madeshiya, Amit Kumar;Singh, Devendra;Mahdi, Abbas Ali;Chandra, Abhjeet
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권13호
    • /
    • pp.5557-5563
    • /
    • 2015
  • Background: Cholelithiasis is associated in 54%-98% of patients with carcinoma of the gallbladder, and a high incidence among females suggests a role of female hormones in the etiology of the disease. Cytochrome $P450C17{\alpha}$ (CYP-17) is a key enzyme involved in estrogen metabolism and polymorphisms in CYP-17 are associated with altered serum levels of estrogens. Thus, we investigated whether the CYP-17 MspA1 gene polymorphism might impact on risk of gall bladder cancers or gallstones, as well as to determine if this gene polymorphism might be linked with estrogen serum levels and lipid profile among the North Indian gall bladder cancer or gallstone patients. Materials and Methods: CYP-17 gene polymorphisms (MspA1) were genotyped with PCR-RFLP in cancer patients (n=96), stone patients (n=102), cancer + stone patients (n=52) and age/sex matched control subjects (n= 256). Lipid profile was estimated using a commercial kit and serum estrogen was measured using ELISA. Results: The majority of the patients in all groups were females. The lipid profile and estrogen level were significantly higher among the study as compared to control groups. The frequency of mutant allele A2 of CYP17 MspA1 gene polymorphism was higher among cancer (OR=5.13, 95% CI+3.10-8.51, p=0.0001), stone (OR=5.69, 95%CI=3.46-9.37, p=0.0001) and cancer + stone (OR=3.54, 95%CI=1.90-6.60, p=0.0001) when compared with the control group. However there was no significant association between genotypes of CYP17 MspA1 gene polymorphism and circulating serum level of estrogen and lipid profile. Conclusions: A higher frequency of mutant genotype A1A2 as well as mutant allele A2 of CYP-17 gene polymorphism is significantly associated with risk of gallbladder cancer and stones. Elevated levels of estrogen and an altered lipid profile can be used as predictors ofgall bladder stones and cancer in post menopausal females in India.

The Promotive Effects of Antioxidative Apigenin on the Bioavailability of Paclitaxel for Oral Delivery in Rats

  • Choi, Sang-Joon;Choi, Jun-Shik
    • Biomolecules & Therapeutics
    • /
    • 제18권4호
    • /
    • pp.469-476
    • /
    • 2010
  • This study was to investigate the effect of apigenin on the bioavailability of paclitaxel after oral and intravenous administration in rats. The effect of apigenin on P-glycoprotein (P-gp), cytochrome P450 (CYP)3A4 activity was evaluated. The pharmacokinetic parameters of paclitaxel were determined in rats after oral (40 mg/kg) or intravenous (5 mg/kg) administration of paclitaxel with apigenin (0.4, 2 and 8 mg/kg) to rats. Apigenin inhibited CYP3A4 activity with 50% inhibition concentration ($IC_{50}$) of 1.8 ${\mu}M$. In addition, apigenin significantly inhibited P-gp activity. Compared to the control group, apigenin significantly increased the area under the plasma concentration-time curve (AUC, p<0.05 by 2 mg/kg, 59.0% higher; p<0.01 by 8 mg/kg, 87% higher) of oral paclitaxel. Apigenin also significantly (p<0.05 by 2 mg/kg, 37.2% higher; p<0.01 by 8 mg/kg, 59.3% higher) increased the peak plasma concentration ($C_{max}$) of oral paclitaxel. Apigenin significantly increased the terminal half-life ($t_{1/2}$, p<0.05 by 8 mg/kg, 34.5%) of oral paclitaxel. Consequently, the absolute bioavailability (A.B.) of paclitaxel was significantly (p<0.05 by 2 mg/kg, p<0.01 by 8 mg/kg) increased by apigenin compared to that in the control group, and the relative bioavailability (R.B.) of oral paclitaxel was increased by 1.14- to 1.87-fold. The pharmacokinetics of intravenous paclitaxel were not affected by the concurrent use of apigenin in contrast to the oral administration of paclitaxel. Accordingly, the enhanced oral bioavailability by apigenin may be mainly due to increased intestinal absorption caused via P-gp inhibition by apigenin rather than to reduced renal and hepatic elimination of paclitaxel. The increase in the oral bioavailability might be mainly attributed to enhanced absorption in the gastrointestinal tract via the inhibition of P-gp and reduced first-pass metabolism of paclitaxel via the inhibition of the CYP3A subfamily in the small intestine and/or in the liver by apigenin. It appears that the development of oral paclitaxel preparations as a combination therapy is possible, which will be more convenient than the i.v. dosage form.

The Molecular Mechanism of Safrole-induced DNA Adducts and its Role to Oral Carcinogenesis

  • Liu, Tsung-Yun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제23권3호
    • /
    • pp.99-102
    • /
    • 2003
  • IARC classified areca quid as a human carcinogen. Areca quid chewed in Taiwan includes Piper betle inflorescence, which contains high concentrations of safrole (15 mg/fresh weight). Safrole is a documented rodent hepatocarcinogen, and chewing areca quid may contribute to human exposure (420 $\mu$m in saliva). The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. Using human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s, CYP2E1 and CYP2C9 were identified as the main P450s involved in the activation of safrole. We have demonstrated the presence of stable safrole-dGMP adducts in human oral tissues following areca quid chewing using $^{32}$ P-postlabeling and HPLC mass spectrometry methods. By studying 88 subjects with a known AQ chewing history and 161 matched controls, we have demonstrated that the presence of safrole-DNA adducts in peripheral blood cells was correlated to AQ chewing, and CYP2E1 seemed to play an important role in the modulation of safrole-DNA adduct formation. We have also shown that safrole can form stable safrole-DNA adducts as well as oxidative damages in rodent liver. However, the stable safrole-DNA adducts may represent a more significant initial lesion as compared to the rapidly repaired safrole-induced 8-hydroxy-2'-deoxyguanosine. This oxidative DNA damage is mediated through the formation of hydoryxchavicol, the major safrole metabolite in human urine. Hydroxychavicol may have gone through two-electron oxidation to the o-quinone; then via one-electron reduction to semiquinone radicals to generate oxidative DNA damage. However, these reactive metabolites can be efficiently conjugated by GSH. These data suggest that safrole may contribute to the initiation of oral carcinogenesis through safrole-DNA adduct and not oxidative DNA damage. In addition, CYP2E1 may modulate this adduct formation.

  • PDF

고도 불포화지방산으로 산화스트레스가 유도된 흰쥐의 뇌에서 비타민 E의 항산화효소 활성 및 CYP2E1 발현에 미치는 효과 (Vitamin E in vivo Studies on the Activity of Antioxidant Enzymes and CYP2E1 Expression in High PUFA-treated Brains)

  • 최문지;김현경;이명숙
    • 한국식품영양과학회지
    • /
    • 제41권8호
    • /
    • pp.1106-1111
    • /
    • 2012
  • 본 연구는 식이 불포화지방산으로 산화 스트레스가 유도된 쥐에게서 비타민 E의 항산화 효과를 알아보기 위해 4주령의 쥐 90마리를 1주일간 적응시킨 후, 정상식이를 섭취한 대조군(C), 식이 불포화지방산(올레산, 리놀레산, 리놀렌산, DHA)군, 식이 불포화지방산에 비타민 E를 첨가한 군으로 나누어 8주간 실시하였다. 체중변화는 대조군에 비하여 모든 군에서 증가하였고, 비타민 E 첨가군에서는 LA+비타민 E군을 제외한 모든 군에서 유의적인 체중증가가 나타났다. 뇌 마이크로좀의 지질과산화물 생성은 대조군에 비해 특히 LA, DHA 군에서 유의적으로 높은 경향을 보였다. 비타민 E 첨가 시 모든 군에서 첨가하지 않은 군에 비하여 지질과산화물 농도가 감소하였다. 뇌 세포질의 항산화 효소 SOD, GPx는 대조군에 비하여 모든 지방산 군에서 활성이 증가하였고 비타민 E 첨가 시 활성이 유의하게 감소하였다. 뇌 마이크로좀의 CYP2E1의 활성은 LNA군에서만 유의적으로 증가하고 비타민 E 첨가 시 LNAE군만이 유의하게 감소됨을 확인하였다. 이상의 실험결과, 식이 불포화지방산으로 유도된 뇌의 산화 스트레스는 비타민 E를 식이 불포화지방산과 같이 섭취함으로써 산화 스트레스 감소에 긍정적 영향을 미치는 것으로 나타났다.

약물유전체학과 정신분열병 (Pharmacogenomics and Schizophrenia)

  • 이규영;정인원
    • 생물정신의학
    • /
    • 제8권2호
    • /
    • pp.208-219
    • /
    • 2001
  • The pharmacotherapy of schizophrenia exhibits wide inter-individual variabilities in clinical efficacy and adverse effects. Recently, human genetic diversity has been known as one of the essential factors to the variation in human drug response. This suggests that drug therapy should be tailored to the genetic characteristics of the individual. Pharmacogenetics is the field of investigation that attempts to elucidate genetic basis of an individual's responses to pharmacotherapy, considering drug effects divided into two categories as pharmacokinetics and pharmacodynamics. The emerging field of pharmacogenomics, which focuses on genetic determinants of drug response at the level of the entire human genome, is important for development and prescription of safer and more effective individually tailored drugs and will aid in understanding how genetics influence drug response. In schizophrenia, pharmacogenetic studies have shown the role of genetic variants of the cytochrome P450 enzymes such as CYP2D6, CYP2C19, and CYP2A1 in the metabolism of antipsychotic drugs. At the level of drug targets, variants of the dopamine $D_2$, $D_3$ and $D_4$, and 5-$HT_{2A}$ and 5-$HT_{2C}$ receptors have been examined. The pharmacogenetic studies in schizophrenia presently shows controversial findings which may be related to the multiple involvement of genes with relatively small effects and to the lack of standardized phenotypes. For further development in the pharmacogenomics of schizophrenia, there would be required the extensive outcome measures and definitions, and the powerful new tools of genomics, proteomics and so on.

  • PDF

Effects of Atorvastatin on the Pharmacokinetics of Nicardipine after Oral and Intravenous Administration in Rats

  • Choi, Jun-Shik;Ha, Sung-Il;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제18권2호
    • /
    • pp.226-232
    • /
    • 2010
  • The aim of this study was to investigate the effect of atrovasatatin on the pharmacokinetics of nicardipine after oral and intravenous administration of nicardipine to rats. Nicardipine was administered orally (12 mg/kg) or intravenously (i.v., 4 mg/kg) without or with oral administration of atrovasatatin (0.3 or 1.0 mg/kg) to rats. The effect of atorvastatin on the P-glycoprotein (P-gp) as well as CYP3A4 activity was also evaluated. Atorvastatin inhibited CYP3A4 enzyme activity in a concentration-dependent manner with 50% inhibition concentration ($IC_{50}$) of 48 ${\mu}M$. Compared to the controls (nicardipine alone), the area under the plasma concentration-time curve (AUC) of nicardipine was significantly (1.0 mg/kg, p<0.05) greater by 16.8-45.4%, and the peak plasma concentration ($C_{max}$) was significantly (1.0 mg/kg, p<0.05) higher by 28.0% after oral administration of nicardipine with atorvastatin, respectively. Consequently, the relative bioavailability (R.B.) of nicardipine was increased by 1.17- to 1.45-fold and the absolute bioavailability (A.B.) of nicardipine with atrovasatatin was significantly greater by 16.7-20.9% compared to that of the controls (14.3%). Compared to the i.v. control, atrovasatatin did not significantly change pharmacokinetic parameters of i.v. administration nicardipine. The enhanced oral bioavailability of nicardipine by atorvastatin suggests that CYP3A subfamily-mediated metabolism were inhibited in the intestine and/or in the liver rather than P-gp-mediated efflux of nicardipine. Based on these results, modification of nicardipine of dosage regimen is required in the patients. Human studies are required to prove the above hypothesis.

Effects of Ticlopidine on the Pharmacokinetics of Diltiazem and Its Main Metabolite, Desacetyldiltiazem, in Rats

  • Choi, Jun-Shik;Yang, Joon-Seung;Choi, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.255-260
    • /
    • 2011
  • The purpose of this study was to investigate the effect of ticlopidine on the pharmacokinetics of diltiazem and its active metabolite, desacetyldiltiazem, in rats. Pharmacokinetic parameters of diltiazem and desacetyldiltiazem were determined in rats after oral administration of diltiazem (15 $mg{\cdot}kg^{-1}$) with ticlopidine (3 or 9 $mg{\cdot}kg^{-1}$). The effects of ticlopidine on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activities were also evaluated. Ticlopidine inhibited CYP3A4 enzyme activity in a concentrationdependent manner with a 50% inhibition concentration ($IC_{50}$) of 35 ${\mu}M$. In addition, ticlopidine did not significantly enhance the cellular accumulation of rhodamine-123 in NCI/ADR-RES cells overexpressing P-gp. Compared with the control (given diltiazem alone), ticlopidine significantly altered the pharmacokinetic parameters of diltiazem. The peak concentration ($C_{max}$) and the area under the plasma concentration-time curve (AUC) of diltiazem were significantly (9 $mg{\cdot}kg^{-1}$, p<0.05) increased in the presence of ticlopidine. The AUC of diltiazem was increased by 1.44-fold in rats in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$). Consequently, the absolute bioavailability (A.B.) of diltiazem in the presence of ticlopidine (9.3-11.5%) was signifi cantly higher (9 $mg{\cdot}kg^{-1}$, p<0.05) than that in the control group (8.0%). Although ticlopidine significantly (p<0.05) increased the AUC of desacetyldiltiazem, the metabolite-parent AUC ratio (M.R.) in the presence of ticlopidine (9 $mg{\cdot}kg^{-1}$) was significantly decreased compared to that in the control group, implying that ticlopidine could effectively inhibit the metabolism of diltiazem. In conclusion, the concomitant use of ticlopidine significantly enhanced the oral bioavailability of diltiazem in rats by inhibiting CYP3A4-mediated metabolism in the intestine and/or liver rather than by inhibiting intestinal P-gp activity or renal elimination of diltiazem.

흰쥐에서 에피게로카테친의 장기투여가 베라파밀의 약물동태에 미치는 영향 (The Effect of Long-term Administration of Epigallocatechin on the Pharmacokinetics of Verapamil in Rats)

  • 윤재경;최준식
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권2호
    • /
    • pp.107-111
    • /
    • 2007
  • Epigallocatechin gallate (EGCC), a flavonoid, is the main component of green tea extracts. EGCG has been reported to be an inhibitor of P-glycoprotein (P-gp) and cytochrom P450 3A(CYP3A4). This study investigated the effect of long-term administration of EGCG on the pharmacokinetics of verapamil in rats. Pharmacokinetic parameters of verapamil were determined after oral administration of verapamil (9 mg/kg) in rats pretreated with EGCG (7.5 mg/hg) for 3 and 9 days. Compared to oral control group, the presence of EGCG significantly (p<0.01) increased the area under the plasma concentration-time curve (AUC) of verapamil by 102% (coad), 83.2% (3 days) and 52.3% (9 days), and the peak concentration $(C_{max})$ by 134% (coad), 120% (3 days) and 66.1% (9 days). The absolute bioavailability (A.B.%) of verapamil was significantly (p<0.01) higher by 8.4% (coad), 7.7% (3 days), 6.4% (9 days) compared to control (4.2%), and presence of EGCG was no significant change in the terminal half-life $(t_{1/2})$ and the time to reach the peak concentration $(T_{max})$ of verapamil. Our results indicate that EGCG significantly enhanced oral bioavailability of verapamil in rats, implying that presence of EGCG could be effective to inhibit the CYP3A4-mediated metabolism and P-gp efflux of verapamil in the intestine. Drug interactions should be considered in the clinical setting when verapamil is coadministrated with EGCG or EGCG-containing dietary.