• 제목/요약/키워드: CYP2B1

검색결과 156건 처리시간 0.021초

Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity

  • Shimada, Tsutomu
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.79-96
    • /
    • 2017
  • A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis(methylene)selenocyanate.

덱스트로메토르판에 대한 한국인의 표현형 및 유전자형 분석 (Metabolic Phenotyping and Genotype of Dextromethorphan in Korean)

  • 정희선;양원경;최화경;양영근;한은영;정운계;유영찬
    • 약학회지
    • /
    • 제46권3호
    • /
    • pp.179-184
    • /
    • 2002
  • The abuse of dextromethorphan has been prevalent for 15 years in Korea and its fatal cases were reported even though it has proved to be very safe. In this study, to investigate the safety and tolerance assessment of dextromethorphan, the metabolic phenotyping and genotype of dextromethorphan were studied. After a single 30 mg of dextromethorphan oral administration to 74 volunteers, concentration of dextromethorphan and its metabolites, dextrorphan, hydroxymorphinan and methoxymorphinan were measured in urine which collected during 8hrs after the drug administration. CYP2D6 phenotype was determined from the ratio of dextromethorphan to dextrorphan. GC/MS was used to quantify dextromethorphan and its metabolites. For genotyping, mutant alleles of the CYP2D6 gene were identified. 24 subjects (32.4%) were homozygous for CYP2D6*10B, 29 subjects (39.2%) were heterozygous for this allele, while in 21 subjects (28.4%) no exon 1 mutation could be found. The frequency of CYP2D6*10B-allele containing the 188C T mutation was 54% of total subjects studied.

Induction and Inhibition of CYP1A Gene Expression and Steroidogenesis in Olive Flounder Paralichthys olivaceus Exposed to Tributyltin and Benzo[a]pyrene

  • Jung Jee-Hyun;Yim Un-Hyuk;Jeon Joong-Kyun;Lee Ji-Seon;Kim Dae-Jung;Han Chang-Hee;Shim Won-Joon
    • Fisheries and Aquatic Sciences
    • /
    • 제9권2호
    • /
    • pp.64-69
    • /
    • 2006
  • Cytochrome P450 (CYP1A) gene expression in the liver and sex steroid levels in plasma were investigated in olive flounder (Paralichthys olivaceus) exposed to tributyltin (TBT) and benzo[a]pyrene (BaP). We constructed a cDNA library and cloned a 230-base sequence encoding partial CYP1A DNA. The CYP1A gene expression level was estimated using northern blotting. Hepatic CYP1A mRNA levels in fish injected with BaP at 10 mg/kg body weight (b.w.) increased for 48 h after injection. However, fish injected with both BaP and TBT at 10 mg/kg b.w. showed no significant changes in CYP1A mRNA level after 48 h. Plasma concentrations of testosterone and $17{\beta}$-estradiol were not significantly different in males and females injected with BaP and TBT. We suggest that TBT-induced suppression of BaP bioactivity should be interpreted with caution in biomonitoring field studies.

Measurement of Human Cytochrome P450 Enzyme Induction Based on Mesalazine and Mosapride Citrate Treatments Using a Luminescent Assay

  • Kim, Young-Hoon;Bae, Young-Ji;Kim, Hyung Soo;Cha, Hey-Jin;Yun, Jae-Suk;Shin, Ji-Soon;Seong, Won-Keun;Lee, Yong-Moon;Han, Kyoung-Moon
    • Biomolecules & Therapeutics
    • /
    • 제23권5호
    • /
    • pp.486-492
    • /
    • 2015
  • Drug metabolism mostly occurs in the liver. Cytochrome P450 (CYP) is a drug-metabolizing enzyme that is responsible for many important drug metabolism reactions. Recently, the US FDA and EU EMA have suggested that CYP enzyme induction can be measured by both enzymatic activity and mRNA expression. However, these experiments are time-consuming and their interassay variability can lead to misinterpretations of the results. To resolve these problems and establish a more powerful method to measure CYP induction, we determined CYP induction by using luminescent assay. Luminescent CYP assays link CYP enzyme activity to firefly luciferase luminescence technology. In this study, we measured the induction of CYP isozymes (1A2, 2B6, 2C9, and 3A4) in cryopreserved human hepatocytes (HMC424, 478, and 493) using a luminometer. We then examined the potential induction abilities (unknown so far) of mesalazine, a drug for colitis, and mosapride citrate, which is used as an antispasmodic drug. The results showed that mesalazine promotes CYP2B6 and 3A4 activities, while mosapride citrate promotes CYP1A2, 2B6, and 3A4 activities. Luminescent CYP assays offer rapid and safe advantages over LC-MS/MS and qRT-PCR methods. Furthermore, luminescent CYP assays decrease the interference between the optical properties of the test compound and the CYP substrates. Therefore, luminescent CYP assays are less labor intensive, rapid, and can be used as robust tools for high-throughput CYP screening during early drug discovery.

The Roles of Kupffer Cells in Hepatocellular Dysfunction after Femur Fracture Trauma in Rats

  • Lee, Woo-Yong;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.47-52
    • /
    • 2003
  • The aim of this study was to investigate the effects of trauma on alterations in cytochrome P450 (CYP 450)-dependent drug metabolizing function and to determine the role of Kupffer cells in hepatocellular dysfunction. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia, while control animals received only anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride (GdCl$_3$) was injected intravenously via the tail vein at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h after FFx, serum alanine aminotransferase (ALT) activity was increased, and this increase was attenuated by GdCl$_3$ pretreatment. Serum aspartate aminotransferase (AST) and lipid peroxidation levels were not changed by FFx. Hepatic microsomal CYP 450 content and aniline p-hydroxylase (CYP 2E1) activity were significantly decreased; decreases that were not prevented by GdC1$_3$. The level of CYP 2B1 activity was decreased by Kupffer cell inactivation, but not by FFx. There were no significant differences in the activities of CYP 1A1, CYP 1A2 and NADPH-CYP 450 reductase among any of the experimental groups. Our findings suggest that FFx trauma causes mild alterations of hepatic CYP 450-dependent drug metabolism, and that Kupffer cells are not essential for the initiation of such injury.

SYNERGISTIC EFFECT OF HUMAN CYTOCHROME B5 COEXPRESSION ON THE METABOLIC ACTIVITY OF CYP1A2 IN CHINESE HAMSTER OVARY CELLS

  • Kang, Jin-Sun;Kang, Hyuck-Joon;Dong, Mi-Sook;Park, Chang-Hwan
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.188-188
    • /
    • 2001
  • Human cytochrome B5 (CYB5) was coexpressed with cytochrome P450 1A2 (CYP1A2), NADPH-CYP450 reductase (CYPR) and Ν-acetyltransferase 2 (NAT2) in Chinese hamster ovary (CHO) cells. The expression of four proteins was determined by Western blot analyses. The introduction of cDNAs to CHO cells were transduced via retroviral vectors. The cytotoxicity assay of 2-aminoanthracene (2-AA) and aflatoxin B$_1$were approximately 4-fold more sensitive than CYB5 free cells.(omitted)

  • PDF

Genetic Polymorphisms and Cancer Susceptibility of Breast Cancer in Korean Women

  • Kang, Dae-Hee
    • BMB Reports
    • /
    • 제36권1호
    • /
    • pp.28-34
    • /
    • 2003
  • Breast cancer is the most prevalent cancer among women in Western countries, and its prevalence is also increasing in Asia. The major risk factor for breast cancer can be traced to reproductive events that influence the lifetime levels of hormones. However, a large percentage of breast cancer cases cannot, be explained by these risk factors. The identification of susceptibility factors that predispose individuals to breast cancer (for instance, if they are exposed to particular environmental agents) could possibly give further insight into the etiology of this malignancy and provide targets for the future development of therapeutics. The most interesting candidate genes include those that mediate a range of functions. These include carcinogen metabolism, DNA repair, steroid hormone metabolism, signal transduction, and cell cycle control. We conducted a hospital-based case-control study in South Korea to evaluate the potential modifying role of the genetic polymorphisms of selected low penetrance genes that are involved in carcinogen metabolisms (i.e., CYP1A1, CYP2E1, GSTM1/T1/P1, NAT1/2, etc.), estrogen synthesis and metabolism (i.e., CYP19, CYP17, CYP1B1, COMT, ER-$\alpha$, etc.), DNA repair (i.e., XRCC1/3, ERCC2/4, ATM, AGT, etc.), and signal transduction as well as others (i.e., TGF-$\beta$, IGF-1, TNF-$\beta$, IL-1B, IL-1RN, etc.). We also took into account the potential interaction between these and the known risk factors of breast cancer. The results of selected genes will be presented in this mini-review.

Differential Regulation of Cytochrome P450 Isozyme mRNAs and Proteins by Femur Fracture Trauma

  • Lee, Woo-Young;Lee, Sun-Mee
    • Archives of Pharmacal Research
    • /
    • 제26권12호
    • /
    • pp.1079-1086
    • /
    • 2003
  • The aim of this study was to investigate the effect of trauma on cytochrome P450 (CYP) gene expression and to determine the role of Kupffer cells in trauma-induced alteration of CYP isozymes. Rats underwent closed femur fracture (FFx) with associated soft-tissue injury under anesthesia. To deplete Kupffer cells in vivo, gadolinium chloride ($GdCl_3$) was intravenously injected at 7.5 mg/kg body wt., 1 and 2 days prior to FFx surgery. At 72 h of FFx, liver tissues were isolated to determine the mRNA and protein expression of CYP isozymes and NADPH-P450 reductase by reverse transcription-polymerase chain reaction and Western immunoblotting, respectively. In addition, the mRNA levels of tumor necrosis factor alpha (TNF-$\alpha$), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1) were evaluated. FFx increased the mRNA level of CYP1A1; an increase that was not prevented by $GdCl_3$. There were no significant differences in the mRNA expression of CYP1A2, 2B1 and 2E1 among any of the experimental groups. The protein levels of CYP2B1 and 2E1 were significantly decreased by FFx; a decrease that was not prevented by $GdCl_3$ treatment. The gene expression of NADPH-P450 reductase was unchanged by FFx. FFx significantly increased the expression of TNF-$\alpha$ mRNA; an increase that was attenuated by $GdCl_3$. The mRNA expression of HO-1 was increased by FFx, but not by $GdCl_3$ . Our findings suggest that FFx differentially regulates the expression of CYP isozyme through Kupffer cell-independent mechanisms.

Inhibitory Effects of 12 Ginsenosides on the Activities of Seven Cytochromes P450 in Human Liver Microsomes

  • Jo, Jung Jae;Shrestha, Riya;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제7권4호
    • /
    • pp.106-110
    • /
    • 2016
  • Ginseng, a traditional herbal drug, has been used in Eastern Asia for more than 2000 years. Various ginsenosides, which are the major bioactive components of ginseng products, have been shown to exert numerous beneficial effects on the human body when co-administered with drugs. However, this may give rise to ginsenoside-drug interactions, which is an important research consideration. In this study, acassette assay was performed the inhibitory effects of 12 ginsenosides on seven cytochrome P450 (CYP) isoforms in human liver microsomes (HLMs) using LC-MS/MS to predict the herb-drug interaction. After incubation of the 12 ginsenosides with seven cocktail CYP probes, the generated specific metabolites were quantified by LC-MS/MS to determine their activities. Ginsenoside Rb1 and F2 showed strong selective inhibitory effect on CYP2C9-catalyzed diclofenac 4'-hydroxylation and CYP2B6-catalyzed bupropion hydroxylation, respectively. Ginsenosides Rd showed weak inhibitory effect on the activities of CYP2B6, 2C9, 2C19, 2D6, 3A4, and compound K, while ginsenoside Rg3 showed weak inhibitory effects on CYP2B6. Other ginsenosides, Rc, Rf, Rg1, Rh1, Rf, and Re did not show significant inhibitory effects on the activities of the seven CYPs in HLM. Owing to the poor absorption of ginsenosides after oral administration in vivo, ginsenosides may not have significant side effects caused by interaction with other drugs.

Lack of Associations between Vitamin D Metabolism-Related Gene Variants and Risk of Colorectal Cancer

  • Mahmoudi, Touraj;Karimi, Khatoon;Arkani, Maral;Farahani, Hamid;Nobakht, Hossein;Dabiri, Reza;Asadi, Asadollah;Vahedi, Mohsen;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권2호
    • /
    • pp.957-961
    • /
    • 2014
  • Purpose: With regard to the protective effect of vitamin D against colorectal cancer (CRC), we evaluated genetic variants that might influence vitamin D metabolism: vitamin D receptor (VDR), vitamin D binding protein (GC), vitamin D 25-hydroxylase (CYP2R1), and vitamin D 25-hydroxy 1-alpha hydroxylase (CYP27B1). Materials and Methods: A total of 657 subjects, including 303 cases with CRC and 354 controls were enrolled in this case-control study. All 657 were genotyped for the four gene variants using PCR-RFLP methods. Results: In this study, no significant difference was observed for VDR (rs2238136), GC (rs4588), CYP2R1 (rs12794714), and CYP27B1 (rs3782130) gene variants in either genotype or allele frequencies between the cases with CRC and the controls and this lack of difference remained even after adjustment for age, BMI, sex, smoking status, NSAID use, and family history of CRC. Furthermore, no evidence for effect modification of the variants and CRC by BMI, sex, or tumor site was observed. Conclusions: Our findings do not support a role for VDR, GC, and CYP27B1 genes in CRC risk in our Iranian population. Another interesting finding, which to our knowledge has not been reported previously, was the lack of association with the CYP2R1 gene polymorphism. Nonetheless, our findings require confirmation and possible roles of vitamin D metabolism-related genes in carcinogenesis need to be further investigated.