• Title/Summary/Keyword: CYP inhibitor

Search Result 67, Processing Time 0.02 seconds

Solution-Phase Strategies for the Design, Synthesis, and Screening of Libraries Based on Natural Products

  • Kim, Sang-Hee
    • Proceedings of the PSK Conference
    • /
    • 2003.10a
    • /
    • pp.88-88
    • /
    • 2003
  • The syntheses of different types of stilbenoid libraries have been studied recently. In these courses, the screening of the generated natural product-mimic focused libraries led to the identification of the novel lead compounds for human cytochrome P450 (CYP) lAs, melanin production, and sortase A. A library of trans-stilbene derivatives was prepared through a new efficient solution pahse synthetic pathway and their inhibitory activities were evaluated on human cytochrome P450s(CYP) 1A1, 1A2, and 1B1 to find a potent and selective CYP1 inhibitor. (omitted)

  • PDF

Cytochrome P-450 2A6 Inhibitor Based on the Indole Moiety

  • Lee, Soo;Lee, Hyang-Yeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.435-442
    • /
    • 2012
  • The cytochrome P-450 enzymes (CYP 2A6) regulate many endogenous signaling molecules and drugs. Aryl alkynes such as 2-ethynylnaphthalene are important P450 inhibitors which have been extensively studied as medicines or as an effective chemical probes for profiling mouse liver microsomal P-450. Here we have synthesized indole-based novel P450 inhibitor, 5-ethynyl indole 3, and showed that it has successfully inhibited CYP 2A6 by chemical inhibition reaction. By using HPLC equipped with a photo diode array(PDA) detector, all of the peaks derived from the enzymatic reaction have been characterized.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • v.33 no.3
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

Histone deacetylation effects of the CYP1A1 promoter activity, proliferation and apoptosis of cells in hepatic, prostate and breast cancer cells

  • K.N. Min;K.E. Joung;M.J. Cho;J.Y. An;Kim, D.K.;Y.Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.91-91
    • /
    • 2003
  • We have studied the mechanism of action of TCDD on CYP1A1 promoter activity in both Hepa I and MCF-7 cells using transient transfection system with plAl-Luc reporter gene. When HDAC inhibitors, such as trichostatin A, HC toxin and a novel HDAC inhibitor, IN2001 were cotreated with TCDD to the cells transfected with plAl-Luc reporter gene, the basal promoter activity of CYP1A1 was increased by HDAC inhibitors. Also, in MCF-7 human breast cancer cells, HDAC inhibitors, such as IN2001 and trichostatin A increased the basal activity of CYP1A1 promoter but TCDD stimulated CYP1A1 promoter activity was not changed by HDAC inhibitors. And, in stably-transfected Hepa I cells with plAl-Luc, HDAC inhibitors increased the basal promoter activity only.

  • PDF

Inhibitory Potential of Bilobetin Against CYP2J2 Activities in Human Liver Microsomes

  • Wu, Zhexue;Jang, Su-Nyeong;Park, So-Young;Phuc, Nguyen Minh;Liu, Kwang-Hyeon
    • Mass Spectrometry Letters
    • /
    • v.11 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • Cytochrome P450 2J2 (CYP2J2) is a member of the cytochrome P450 superfamily, and is known to be arachidonic acid epoxygenase that mediates the formation of four bioactive regioisomers of epoxyeicosatrienoic acids (EETs). CYP2J2 is also involved in the metabolism of drugs such as albendazole, astemizole, danazol, ebastine, and terfenadine. CYP2J2 is highly expressed in the heart and cancer tissues. In this study, the inhibitory potential of ten natural products against CYP2J2 activity was evaluated using human liver microsomes and tandem mass spectrometry. Among them, bilobetin, which is a kind of biflavonoid, exhibits a strong inhibitory effect against the CYP2J2-mediated astemizole O-demethylation (IC50 = 0.73 μM) and terfenadine hydroxylation (IC50 = 0.89 μM). This result suggests that bilobetin can be used as strong CYP2J2 inhibitor in drug metabolism study.

Mechanism of Inhibition of Human Cytochrome P450 1A1 and 1B1 by Piceatannol

  • Chae, Ah-Reum;Shim, Jae-Ho;Chun, Young-Jin
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.336-342
    • /
    • 2008
  • The resveratrol analogue piceatannol (3,5,3',4'-tetrahydroxy-trans-stilbene) is a polyphenol present in grapes and wine and reported to have anti-carcinogenic activities. To investigate the mechanism of anticarcinogenic activities of piceatannol, the effects on CYP 1 enzymes were determined in Escherichia coli membranes coexpressing recombinant human CYP1A1, CYP1A2 or CYP1B1 with human NADPH-P450 reductase. Piceatannol showed a strong inhibition of CYP1A1 and CYP1B1 in a concentration-dependent manner, and $IC_{50}$ of human CYP1A1 and CYP1B1 was 5.8 ${\mu}M$ and 16.6 ${\mu}M$, respectively. However, piceatannol did not inhibit CYP1A2 activity in the concentration of up to 100 ${\mu}M$. Piceatannol exhibited 3-fold selectivity for CYP1B1 over CYP1A1. The mode of inhibition of piceatannol was non-competitive for CYP1A1 and CYP1B1. The result that piceatannol did not inhibit CYP1B1-mediated $\alpha$-naphthoflavone ($\alpha$-NF) metabolism suggests piceatannol may act as a non-competitive inhibitor as well. In human prostate carcinoma PC-3 cells, piceatannol induces apoptosis and prevents Aktmediated signal pathway. Taken together, abilities of piceatannol to induce apoptotic cell death as well as CYP1 enzyme inhibition make this compound a useful tool for cancer chemoprevention.

A Cyclophilin from Griffithsia japonica Has Thermoprotective Activity and Is Affected by CsA

  • Cho, Eun Kyung;Lee, Yoo Kyung;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.142-150
    • /
    • 2005
  • Members of the multifunctional Cyp family have been isolated from a wide range of organisms. However, few functional studies have been performed on the role of these proteins as chaperones in red alga. For studying the function of cDNA GjCyp-1 isolated from the red alga (Griffithsia japonica), we expressed and purified a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus in Escherichia coli. An expressed fusion protein, $H_6GjCyp-1$ maintained the stability of E. coli proteins up to $50^{\circ}C$. For a functional bioassay for recombinant $H_6GjCyp-1$, the viability of E. coli cells overexpressing $H_6GjCyp-1$ was compared with that of cells not expressing $H_6GjCyp-1$ at $50^{\circ}C$. After high temperature treatment for 1 h, E. coli overexpressing $H_6GjCyp-1$ survived about three times longer than E. coli lacking $H_6GjCyp-1$. Measurement of the light scattering of luciferase (luc) showed that GjCyp-1 prevents the aggregation of luc during mild heat stress and that the thermoprotective activity of GjCyp-1 is blocked by cyclosporin A (CsA), an inhibitor of Cyps. Furthermore, the Cyp-CsA complex inhibited the growth of E. coli under normal conditions. The results of the GjCyp-1 bioassays as well as in vitro studies strongly suggest that Cyp confers thermotolerance to E. coli.

Trichostatin A, a Histone Deacetylase Inhibitor Stimulate CYP3A4 Proximal Promoter Activity in Hepa-I Cells

  • Ahn Mee Ryung;Kim Dae-Kee;Sheen Yhun Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.4
    • /
    • pp.415-421
    • /
    • 2004
  • Cytochrome P450 3A4 (CYP3A4) is the most abundant CYPs in human liver, comprising approximately $30\%$ of the total liver CYPs contents and is involved in the metabolism of more than $60\%$ of currently used therapeutic drugs. However, the molecular mechanisms underly-ing regulation of CYP3A4 gene expression have not been understood. Thus, this study has been carried out to gain the insight of the molecular mechanism of CYP3A4 gene expression, investigating if the histone deacetylation is involved in the regulation of CYP3A4 gene expression by proximal promoter. Also SXR was investigated to see if they were involved in the regulation of CYP3A4 proximal promoter activity. Hepa-1 cells were transfected with a plasmid containing ${\~}1kb$ of the human CYP3A4 proximal promoter region (863 to +64 bp) cloned in front of a reporter gene, luciferase, in the presence or absence of SXR. Transfected cells were treated with CYP3A4 inducers such as rifampicin, PCN and RU 486, in order to examine the regulation of CYP3A4 gene expression in the presence or absence of trichostatin A (TSA). In Hepa-1 cells, CYP3A4 inducers increased modestly the luciferase activity when TSA was co-treated, but this increment was not enhanced by SXR cotransfection. Taken together, these results indicated that the inhibition of histone deacetylation was required to SXR-mediated increase in CYP3A4 proximal promoter region when rifampicin, or PCN was treated. Further a trans-activation by SXR may demand other species-specific transcription factors.