• 제목/요약/키워드: CYP

검색결과 926건 처리시간 0.031초

기수산물벼룩 Diaphanosoma celebensis의 미세플라스틱 노출에 따른 크기 의존적 Cytochrome P450 유전자의 발현 양상 (Size-dependent Transcriptional Modulation of Genes Involved in Cytochrome P450 Family in the Brackish Water Flea Diaphanosoma celebensis Exposed to Polystyrene Beads)

  • 전민정;유제원;이영미
    • 한국해양생명과학회지
    • /
    • 제8권2호
    • /
    • pp.104-114
    • /
    • 2023
  • 플라스틱은 전세계적으로 사용량이 증가함에 따라 해양 환경으로 유입되는 플라스틱 쓰레기의 양도 꾸준히 증가하고 있으며, 미세플라스틱은 해양 생물에 의해 섭취되어 소화관에 축적됨에 따라 성장과 생식에 유해한 영향을 미친다. Cytochrome P450 (CYP)는 환경 오염물질을 대사하는 해독효소로 알려져 있으나 지각류에서는 그 기능에 대해서는 잘 알려져 있지 않다. 본 연구에서는 기수산 물벼룩 Diaphanosoma celebensis에서 clan 2, 3, 4에 각각 속하는 CYP 유전자 9종(clan 2: CYP370A4, CYP370C5; clan 3: CYP350A1, CYP350C5, CYP361A1; clan 4: CYP4AN-like, CYP4AP2, CYP4AP3, CYP4C33-like1)의 서열에 대해 진화적으로 보존된 서열의 유사도를 분석하고 계통분석을 실시하였다. 또한 3종류의 서로 다른 크기의 polystyrene beads (0.05-, 0.5-, 6-㎛ PS beads; 0.1, 1, and 10 mg/L)에 48시간 노출된 기수산 물벼룩에서 이들 9종의 CYP 유전자의 발현을 real time reverse transcription polymerase chain reaction (RT-PCR)로 분석하였다. 결과적으로 기수산 물벼룩 CYP 유전자는 모두 진화적으로 보존된 motif를 가지고 있으며 계통분석 결과 각각 clan 2, 3, 4에 속하는 것으로 확인되었다. 이는 기능적으로 보존되어 있음을 의미한다. CYP 유전자 중 clan 2에 속하는 CYP370C5와 clan 3에 속하는 CYP360A1, 그리고 clan 4에서는 CYP4C122 유전자의 발현이 0.05-㎛ PS beads에 노출되었을 때 유의하게 증가하는 양상을 보였으며, 이는 이들 유전자가 PS 대사에 관여한다는 것을 의미한다. 본 연구는 미세플라스틱이 해양 무척추 동물에 미치는 생물 영향을 분자적 수준에서 이해하는데 도움이 될 것이다.

A Comparison of the In Vitro Inhibitory Effects of Thelephoric Acid and SKF-525A on Human Cytochrome P450 Activity

  • Song, Min;Do, HyunHee;Kwon, Oh Kwang;Yang, Eun-Ju;Bae, Jong-Sup;Jeong, Tae Cheon;Song, Kyung-Sik;Lee, Sangkyu
    • Biomolecules & Therapeutics
    • /
    • 제22권2호
    • /
    • pp.155-160
    • /
    • 2014
  • Thelephoric acid is an antioxidant produced by the hydrolysis of polyozellin, which is isolated from Polyozellus multiplex. In the present study, the inhibitory effects of polyozellin and thelephoric acid on 9 cytochrome P450 (CYP) family members (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4) were examined in pooled human liver microsomes (HLMs) using a cocktail probe assay. Polyozellin exhibited weak inhibitory effects on the activities of all 9 CYPs examined, whereas thelephoric acid exhibited dose- and time-dependent inhibition of all 9 CYP isoforms ($IC_{50}$ values, $3.2-33.7{\mu}M$). Dixon plots of CYP inhibition indicated that thelephoric acid was a competitive inhibitor of CYP1A2 and CYP3A4. In contrast, thelephoric acid was a noncompetitive inhibitor of CYP2D6. Our findings indicate that thelephoric acid may be a novel, non-specific CYP inhibitor, suggesting that it could replace SKF-525A in inhibitory studies designed to investigate the effects of CYP enzymes on the metabolism of given compounds.

Expression of CYP2A6, CYP2D6 and CYP4A11 Polymorphisms in COS7 Mammalian Cell Line

  • Lee, Hye-Ja;Park, Mi-Kyung;Park, Young-Ran;Kim, Dong-Hak;Yun, Chul-Ho;Chun, Young-Jin;Shin, Hee-Jung;Na, Han-Sung;Chung, Myeon-Woo;Lee, Chang-Hoon
    • Toxicological Research
    • /
    • 제27권1호
    • /
    • pp.25-29
    • /
    • 2011
  • The cytochrome P450 (P450, CYP) are the superfamily of heme-containing monooxygenase enzymes, found throughout all nature including mammals, plants, and microorganisms. Mammalian P450 enzymes are involved in oxidative metabolism of a wide range of endo- and exogenous chemicals. Especially P450s involved in drug metabolisms are important for drug efficacy and polymorphisms of P450s in individuals reflect differences of drug responses between people. To study the functional differences of CYP2A6, CYP2D6, and CYP4A11 variants, we cloned the four CYP2A6, three CYP2D6, and three CYP4A11 variants, which were found in Korean populations, in mammalian expression vector pcDNA by PCR and examined their expressions in COS-7 mammalian cells using immunoblots using P450 specific polyclonal antibodies. Three of four CYP2A6, two of three CYP4A11, and two of three CYP2D6 variants showed expressions in COS-7 cells but the relative levels of expressions are remarkably different in those of each variants. Our findings may help to study and explain the differences between functions of CYP variants and drug responses in Korean populations.

Pseudonocardia autotrophica 유래의 신규 Cytochrome Cytochrome P450 Hydroxylase 유전자의 분리 및 염기서열 특성규명 (Cloning and Characterization of Novel Cytochrome P450 Hydroxylase Genes from Pseudonocardia autotrophica)

  • 명지선;박현주;한규범;김상년;김응수
    • 미생물학회지
    • /
    • 제40권3호
    • /
    • pp.221-225
    • /
    • 2004
  • 본 논문에서는 희소 방선균, Pseudonocardia autotrophica(KCTC 9441) 유래 신규 Cytochrome P450 hydroxylase(CYP) 유전자들을 분리하여 염기서열 특성을 규명하였으며, 기존에 밝혀진 다른 방선균 유래 CYP 유전자들과의 연관성을 알아보았다. 이를 위하여 P. autotrophica의 cosmid DNA library를 제작하였고, 방선균에서 발견되는 CYP 유전자군의 보존된 서열로부터 제작된 degenerate primers를 이용한 PCR을 수행하여, P. autotrophica cosmid DNA library를 검색하였다. P. autotrophica cosmid DNA library검색 결과, P. autotrophica에는 염기서열이 서로 다른 4종의 신규 CYP유전자가 존재함이 확인되었으며 (CYP601-1, 601-2, 602, 605), 이들 신규 CYP유전자들은 방선균 유래 2차대사산물의 생합성에 관여하는 CYP유전자와 높은 유사성을 나타냈다. 특히, pESK601에서 확인된 CYP 유전자 및 주변 유전자의 염기서 열을 검색한 결과, polyene 계열의 항진균제, amphotericin과 nystatin의 생합성 유전자들과 매우 높은 유사성을 보임으로써, P. autotrophica에는 신규polyene계열의 항진균제 화합물의 생합성 유전자 군이 존재함도 규명되었다.

Effect of methylsulfonylmethane on oxidative stress and CYP3A93 expression in fetal horse liver cells

  • Kim, Kyoung Hwan;Park, Jeong-Woong;Yang, Young Mok;Song, Ki-Duk;Cho, Byung-Wook
    • Animal Bioscience
    • /
    • 제34권2호
    • /
    • pp.312-319
    • /
    • 2021
  • Objective: Stress-induced cytotoxicity caused by xenobiotics and endogenous metabolites induces the production of reactive oxygen species and often results in damage to cellular components such as DNA, proteins, and lipids. The cytochrome P450 (CYP) family of enzymes are most abundant in hepatocytes, where they play key roles in regulating cellular stress responses. We aimed to determine the effects of the antioxidant compound, methylsulfonylmethane (MSM), on oxidative stress response, and study the cytochrome P450 family 3 subfamily A (CYP3A) gene expression in fetal horse hepatocytes. Methods: The expression of hepatocyte markers and CYP3A family genes (CYP3A89, CYP3A93, CYP3A94, CYP3A95, CYP3A96, and CYP3A97) were assessed in different organ tissues of the horse and fetal horse liver-derived cells (FHLCs) using quantitative reverse transcription polymerase chain reaction. To elucidate the antioxidant effects of MSM on FHLCs, cell viability, levels of oxidative markers, and gene expression of CYP3A were investigated in H2O2-induced oxidative stress in the presence and absence of MSM. Results: FHLCs exhibited features of liver cells and simultaneously maintained the typical genetic characteristics of normal liver tissue; however, the expression profiles of some liver markers and CYP3A genes, except that of CYP3A93, were different. The expression of CYP3A93 specifically increased after the addition of H2O2 to the culture medium. MSM treatment reduced oxidative stress as well as the expression of CYP3A93 and heme oxygenase 1, an oxidative marker in FHLCs. Conclusion: MSM could reduce oxidative stress and hepatotoxicity in FHLCs by altering CYP3A93 expression and related signaling pathways.

Effects of CYP1A2$^*$1C and CYP1A2$^*$1F Genotypes on the Activity and Inducibility of CYP1A2 Determined by Urinary Caffeine Metabolite Ratio in Koreans

  • Shin, Mi-Kyung;Yi, Hyeon-Gyu;Kwon, Yong-Hyun;Lee, Sung-Keun;Lim, Woo-Sung;Park, Chang-Shin;Kang, Ju-Hee
    • Molecular & Cellular Toxicology
    • /
    • 제3권4호
    • /
    • pp.314-319
    • /
    • 2007
  • The effects of common variants of CYP1A2 gene (CYP1A2$^*$1C and CYP1A2$^*$1F) on the CYP1A2 activity and inducibility were controversial. The aim of the present study is to investigate the effects of CYP1A2$^*$1C and CYP1A2$^*$1F on the activity of CYP1A2 determined by urinary caffeine metabolite ratio in Koreans. As might be expected, there was large inter-individual variation (16-folds) of CYP1A2 activity ranged from 2.41 to 39.58. The mean CYP1A2 activity of smokers was significantly higher than that of non-smokers. The frequencies of CYP1A2$^*$1C (-3858A) and $^*$1F (-164A) alleles were 0.219 and 0.646, respectively. The effect of CYP1A2$^*$1C on the CYP1A2 activity was not significant. However, the CYP1A2 activity of subjects with AA genotype for CYP1A2$^*$1F allele was significantly lower than that of non-AA genotypes (CC, or CA). Interestingly, the significant effect of CYP1A2$^*$1F allele on CYP1A2 activity was not observed in nonsmokers. Our results suggest that CYP1A2$^*$1F allele rather than CYP1A2$^*$1C allele significantly influences on the inducibility of CYP1A2 in Koreans. Owing to small sample size of our study, further studies should be conducted to reveal the inter-ethnic difference or the gene-environmental interaction.

CYP1B1 Activates Wnt/β-Catenin Signaling through Suppression of Herc5-Mediated ISGylation for Protein Degradation on β-Catenin in HeLa Cells

  • Park, Young-Shin;Kwon, Yeo-Jung;Chun, Young-Jin
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.211-218
    • /
    • 2017
  • Cytochrome P450 1B1 (CYP1B1) acts as a hydroxylase for estrogen and activates potential carcinogens. Moreover, its expression in tumor tissues is much higher than that in normal tissues. Despite this association between CYP1B1 and cancer, the detailed molecular mechanism of CYP1B1 on cancer progression in HeLa cells remains unknown. Previous reports indicated that the mRNA expression level of Herc5, an E3 ligase for ISGylation, is promoted by CYP1B1 suppression using specific small interfering RNA, and that ISGylation may be involved in ubiquitination related to ${\beta}-catenin$ degradation. With this background, we investigated the relationships among CYP1B1, Herc5, and ${\beta}-catenin$. RT-PCR and western blot analyses showed that CYP1B1 overexpression induced and CYP1B1 inhibition reduced, respectively, the expression of $Wnt/{\beta}-catenin$ signaling target genes including ${\beta}-catenin$ and cyclin D1. Moreover, HeLa cells were treated with the CYP1B1 inducer $7,12-dimethylbenz[{\alpha}]anthracene$ (DMBA) or the CYP1B1 specific inhibitor, tetramethoxystilbene (TMS) and consequently DMBA increased and TMS decreased ${\beta}-catenin$ and cyclin D1 expression, respectively. To determine the correlation between CYP1B1 expression and ISGylation, the expression of ISG15, a ubiquitin-like protein, was detected following CYP1B1 regulation, which revealed that CYP1B1 may inhibit ISGylation through suppression of ISG15 expression. In addition, the mRNA and protein expression levels of Herc5 were strongly suppressed by CYP1B1. Finally, an immunoprecipitation assay revealed a direct physical interaction between Herc5 and ${\beta}-catenin$ in HeLa cells. In conclusion, these data suggest that CYP1B1 may activate $Wnt/{\beta}-catenin$ signaling through stabilization of ${\beta}-catenin$ protein from Herc5-mediated ISGylation for proteosomal degradation.

Effects of Hydroxyl Group Numbers on the B-Ring of 5,7-Dihydroxyflavones on the Differential Inhibition of Human CYP 1A and CYP1B1 Enzymes

  • Kim Hyun-Jung;Lee Sang Bum;Park Song-Kyu;Kim Hwan Mook;Park Young In;Dong Mi-Sook
    • Archives of Pharmacal Research
    • /
    • 제28권10호
    • /
    • pp.1114-1121
    • /
    • 2005
  • Flavonoids are polyphenols composed of two aromatic rings (A, B) and a heterocyclic ring (C). In order to determine the effects of the number of hydroxyl groups in the B-ring of the flavonoids on human cytochrome P450 (CYP) 1 family enzymes, we evaluated the inhibition of CYP1A-dependent 7-ethoxyresorufin O-deethylation activity by chrysin, apigenin and luteolin, using bacterial membranes that co-express human CYP1A1, CYP1A2, or CYP1B1 with human NADPH-cytochrome P450 reductase. Chrysin, which possesses no hydroxyl groups in its B-ring, exhibited the most pronounced inhibitory effects on CYP1A2-dependent EROD activity, followed by apigenin and luteolin. On the contrary, CYP1A1-mediated EROD activity was most potently inhibited by luteolin, which is characterized by two hydroxyl groups in its B-ring, followed by apigenin and chrysin. However, all of the 5,7-dihydroxyflavones were determined to similarly inhibit CYP1B1 activity. Chrysin, apigenin, and luteolin exhibited a mixed-type mode of inhibition with regard to CYP1A2, CYP1B1, and CYP1A1, with apparent Ki values of 2.4, 0.5, and 2.0 ${\mu}M$, respectively. These findings suggested that the number of hydroxyl groups in the B-ring of 5,7-dihydroxyflavone might have some influence on the degree to which CYP1A enzymes were inhibited, but not on the degree to which CYP1B1 enzymes were inhibited.

Purification and Characterization of the Rat Liver CYP2D1 and Utilization of Reconstituted CYP2D1 in Caffeine Metabolism

  • Chung, Woon-Gye;Cho, Myung-Haing;Cha, Young-Nam
    • Toxicological Research
    • /
    • 제13권1_2호
    • /
    • pp.117-125
    • /
    • 1997
  • In order to assess the possibility whether CYP2D is involved in caffeine metabolism, we have purified and characterized the rat liver microsomal cytochrome P4502D1 (CYP2D1), equivalent to CYP2D6 in human liver, and have utilized the reconstituted CYP2D1 in the metabolism of 4 primary caffeine (1, 3, 7-trimethylxanthine) metabolites such as paraxanthine (1, 7-dimethylxanthine), 1, 3, 7-trimethylurate, theophylline (1, 3-dimethylxanthine) and theobromine (3, 7-dimethylxanthine). Rat liver CYP 2D1 has been purified to a specific content of 8.98 nmole/mg protein (13.4fold purification, 1.5% yield) using $\omega$-aminooctylagarose, hydroxlapatite, and DE52 columns in a sequential manner. As judged from sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the purified CYP2D1 was apparently homogeneous. Molecular weight of the purified CYP2D1 was found to be 51, 000 Da. Catalytic activity of the purified and then reconstituted CYP2D1 was confirmed by using bufuralol, a known subsFate of CYP2D1. The reconstituted CYP2D1 was found to produce to 1-hydroxylbufuralol at a rate of 1.43$\pm$0.13 nmol/min/nmol P450. The kinetic analysis of bufuralol hydroxylation indicated that Km and Vmax values were 7.32$\mu M$ and 1.64 nmol/min/nmol P450, respectively. The reconstituted CYP2D1 could catalyze the 7-demethylation of PX to 1-methylxanthine at a rate of 12.5 pmol/min/pmol, and also the 7- and 3- demethylations of 1, 3, 7-trimethylurate to 1, 3-dimethylurate and 1, 7-dimethylurate at 6.5 and 12.8 pmol/min/pmol CYP2D1, respectively. The reconstituted CYP2D1 could also 3-demethylate theophylline to 1-methylxanthine at 5 pmol/min/pmol and hydroxylate the theophylline to 1, 3-dimethylurate at 21.8 pmol/min/pmol CYP2D1. The reconstituted CYP2D1, however, did not metabolize TB at all (detection limits were 0.03 pmol/min/pmol). This study indicated that CYP2D1 is involved in 3-and 7-demethylations of paraxanthine and theophylline and suggested that CYP2D6 (equivalent to CYP2D1 in rat liver) present in human liver may be involved in the secondary metabolism of the primary metabolites of caffeine.

  • PDF

HepG2 세포에서 용매에 의한 차별적인 사람 싸이토크롬 P450 2E1활성 변화 (Differential Role of Solvents on Human Cytochrome P450 2El Activity in Intact HepG2 Cells)

  • 최달웅
    • 한국환경보건학회지
    • /
    • 제29권3호
    • /
    • pp.9-15
    • /
    • 2003
  • The modification of CYP2El activity is a matter of considerable interest because of its role in the metabolic activation of a variety of environmental toxicants. In the present study, the time-course of changes in human CYP2El activities was determined following treatment with solvents (acetone, dimethylsulphoxide or pyridine) using intact HepG2 cells transfected by human CYP2El. Hydroxylation of chlorzoxazone was used for the measurement of CYP2El activity. CYP2E1 protein level was increased upon cultivation of cells in the presence of the solvents for 24 hr. Determination of CYP2El activities after 24 ht cultivation with the solvents demonstrated that acetone or dimethylsulphoxide increased, whereas pyridine inhibited the activities. This differential effect of the solvents on CYP2El activities persisted to subsequent 24 ht. Competitive inhibition study suggested that pyridine has stronger binding affinity to CYP2E1 than acetone or dimethylsulphoxide. These results demonstrate that different binding affinity of the solvents to CYP2El plays important role in determining real CYP2El activity in intact cells after exposure to the solvents. Present study would be helpful in precise understanding of human CYP2El-mediated toxicity.