• Title/Summary/Keyword: CYP

Search Result 926, Processing Time 0.027 seconds

CsA Affects the Rat Submandibular Glands via Regulating the CypA Expression

  • Lee, Eun-Joo;Hong, Young-Gil;Yoo, Hong-Il;Yang, So-Young;Kang, Jee-Hae;Kim, Min-Seok;Kim, Sun-Hun
    • International Journal of Oral Biology
    • /
    • v.37 no.4
    • /
    • pp.153-159
    • /
    • 2012
  • The effects of the an immunosuppressive drug cyclosporine A (CsA), on the salivary gland are largely unknown, even though clinical trials for the stimulation of salivation using CsA have been attempted. Cyclophilin A (CypA) is known to be a binding protein for CsA. CypA has cell proliferation and tissue matrix change activities. In our present study, the presence of CypA in the gland and effects of CsA on CypA expression were investigated by immunohistochemistry, immunoblotting and RT-PCR analyses. CypA was immunohistochemically detected in various kinds of ducts in the submandibular glands of Sprague Dawley rats. The CypA mRNA level was highest at postnatal day 1 and gradually decreased in a time-dependent manner up to adulthood. The expression of CypA increased after a 10 day subcutaneous administration of CsA in postnatal day 1 rats. Surgical sections of the chorda-lingual nerve with impaired salivation showed no changes in CypA expression. A cell proliferation assay using PCNA anti-serum showed increased cell division following CsA treatment. These results suggest that CsA and CypA may act on ductal cells to regulate saliva composition rather than salivation levels.

Association of gastric cancer with cytochrome P450 2C19 single-nucleotide polymorphisms in Koreans

  • Kim, Hyun-Ju;Park, Hye-Jung;Lee, Sang-Gyu;Lee, Hye-Suk;Park, Won-Cheol;Kim, Jeong-Joong;Oh, Gyung-Jae;Kim, Yun-Kyung
    • Advances in Traditional Medicine
    • /
    • v.7 no.4
    • /
    • pp.357-362
    • /
    • 2007
  • Cytochrome P450 2C19 (CYP2C19) is a clinically important enzyme involved in the metabolism of therapeutic drugs, including (S)-mephenytoin, omeprazole, proguanil, and diazepam. Individuals are characterized as either extensive metabolizers (EM) or poor metabolizers (PM) on the basis of CYP2C19 enzyme activity. The PM phenotype occurs in 2-5% of Caucasians, but in 18-23% of Asians. To clarify the association between CYP2C19 polymorphisms and gastric cancer in Koreans, we investigated CYP2C19 genotypes ($CYP2C19^*1,\;{^*2},\;and\;^*3$) in 109 patients with gastric cancer and 211 controls. Normal ($CYP2C19^*1$) and defective alleles were detected with polymerase chain reaction/restriction enzyme analysis. CYP2C19 has three hereditary genotypes: homozygous EM, with high enzymatic activity; heterozygous EM, with moderate enzymatic activity; and PM, with no enzyme activity. We found that CYP2C19 heterozygous EM is more closely associated with gastric cancer than is homozygous EM. Because the CYP2C19 genotype varies in Koreans, a genotyping test is desirable to prevent gastropathy recurrence in patients before their doses of omeprazole are reduced during maintenance therapy.

No Role of Protected Region B of Human Cytochrome P4501A2 Gene (CYP1A2) As an AP-1 Response Element

  • Chung, In-Jae;Jung, Ki-Hwa
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.375-380
    • /
    • 2002
  • Cytochrome P4501A2 (CYP1A2) is a member of the cytochrome P450 family of isozymes involved in the phase I drug metabolism of vertebrates. CYP1A2 is responsible for the activation of a number of aromatic amines to mutagenic and carcinogenic forms. Thus, the level of CYP1A2, which varies among different populations, may determine an individual's susceptibility to these chemicals. We have previously reported on the importance of a cis element named PRB (protected region B) in the regulation of human Cytochrome P4501A2 (CYP1A2) gene, which appeared to act as a positive regulatory element. Closer examination of the PRB sequence (-2218 to -2187 bp) revealed a putative AP-1 binding site, TGACTAA, at -2212 bp (Chung and Bresnick, 1997). To elucidate the role of AP-1 in CYP1A2 regulation, we transiently overexpressed c-Jun and c-Fos transcription factors in human hepatoma HepG2 cells, and examined their influence on the CYP1A2 promoter activity by reporter gene assays. Cotransfection of the c-Jun and the c-Fos expression vectors increased the induced transactivation by five to six fold from the CYP1A2 promoter constructs. However, deletion of the PRB element did not affect the degree of activation by the c-Jun and the c-Fos. Therefore, it is unlikely that the c-Jun and the c-Fos activate the CYP1A2 promoter through this AP-1 consensus-like sequence in the PRB region.

Effects of the CYP2C19 Genetic Polymorphism on Gastritis, Peptic Ulcer Disease, Peptic Ulcer Bleeding and Gastric Cancer

  • Jainan, Wannapa;Vilaichone, Ratha-Korn
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.24
    • /
    • pp.10957-10960
    • /
    • 2015
  • Background: The CYP2C19 genotype has been found to be an important factor for peptic ulcer healing and H. pylori eradication, influencing the efficacy of proton pump inhibitors (PPIs) and the pathogenesis of gastric cancer. The aim of this study was to investigate clinical correlations of the CYP2C19 genotype in patients with gastritis, peptic ulcer disease (PUD), peptic ulcer bleeding (PUB) and gastric cancer in Thailand. Materials and Methods: Clinical information, endoscopic findings and H. pylori infection status of patients were assessed between May 2012 and November 2014 in Thammasat University Hospital, Thailand. Upper GI endoscopy was performed for all patients. Five milliliters of blood were collected for H. pylori serological diagnosis and CYP2C19 study. CYP2C19 genotypes were determined by polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis (RFLP) and classified as rapid metabolizer (RM), intermediate metabolizer (IM) or poor metabolizer (PM). Results: A total of 202 patients were enrolled including 114 with gastritis, 36 with PUD, 50 with PUB and 2 with gastric cancer. Prevalence of CYP2C19 genotype was 82/202 (40.6%) in RM, 99/202 (49%) in IM and 21/202 (10.4%) in PM. Overall H. pylori infection was 138/202 patients (68.3%). H. pylori infection was demonstrated in 72% in RM genotype, 69.7% in IM genotype and 47.6% in PM genotype. Both gastric cancer patients had the IM genotype. In PUB patients, the prevalence of genotype RM (56%) was highest followed by IM (32%) and PM(12%). Furthermore, the prevalence of genotype RM in PUB was significantly greater than gastritis patients (56% vs 36%: p=0.016; OR=2.3, 95%CI=1.1-4.7). Conclusions: CYP2C19 genotype IM was the most common genotype whereas genotype RM was the most common in PUB patients. All gastric cancer patients had genotype IM. The CYP2C19 genotype RM might be play role in development of PUD and PUB. Further study in different population is necessary to verify clinical usefulness of CYP2C19 genotyping in development of these upper GI diseases.

Four Polymorphisms in the Cytochrome P450 1A2 (CYP1A2) Gene and Lung Cancer Risk: a Meta-analysis

  • Bu, Zhi-Bin;Ye, Meng;Cheng, Yun;Wu, Wan-Zhen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5673-5679
    • /
    • 2014
  • Background: Previous published data on the association between CYP1A2 rs762551, rs2069514, rs2069526, and rs2470890 polymorphisms and lung cancer risk have not allowed a definite conclusion. The present meta-analysis of the literature was performed to derive a more precise estimation of the relationship. Materials and Methods: 8 publications covering 23 studies were selected for this meta-analysis, including 1,665 cases and 2,383 controls for CYP1A2 rs762551 (from 8 studies), 1,456 cases and 1,792 controls for CYP1A2 rs2069514 (from 7 studies), 657 cases and 984 controls for CYP1A2 rs2069526 (from 5 studies) and 691 cases and 968 controls for CYP1A2 rs2470890 (from 3 studies). Results: When all the eligible studies were pooled into the meta-analysis for the CYP1A2 rs762551 polymorphism, significantly increased lung cancer risk was observed in the dominant model (OR=1.21, 95 % CI=1.00-1.46). In the subgroup analysis by ethnicity, significantly increased risk of lung cancer was observed in Caucasians (dominant model: OR=1.29, 95%CI=1.11-1.51; recessive model: OR=1.33, 95%CI=1.01-1.75; additive model: OR=1.49, 95%CI=1.12-1.98). There was no evidence of significant association between lung cancer risk and CYP1A2 rs2069514, s2470890, and rs2069526 polymorphisms. Conclusions: In summary, this meta-analysis indicates that the CYP1A2 rs762551 polymorphism is linked to an increased lung cancer risk in Caucasians. Moreover, our work also points out the importance of new studies for rs2069514 associations in lung cancer, where at least some of the covariates responsible for heterogeneity could be controlled, to obtain a more conclusive understanding about the function of the rs2069514 polymorphism in lung cancer development.

Regioselective Oxidation of Lauric Acid by CYP119, an Orphan Cytochrome P450 from Sulfolobus acidocaldarius

  • Lim, Young-Ran;Eun, Chang-Yong;Park, Hyoung-Goo;Han, Song-Hee;Han, Jung-Soo;Cho, Kyoung-Sang;Chun, Young-Jin;Kim, Dong-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.574-578
    • /
    • 2010
  • Archaebacteria Sulfolobus acidocaldarius contains the highly thermophilic cytochrome P450 enzyme (CYP119). CYP119 possesses stable enzymatic activity at up to $85^{\circ}C$. However, this enzyme is still considered as an orphan P450 without known physiological function with endogenous or xenobiotic substrates. We characterized the regioselectivity of lauric acid by CYP119 using the auxiliary redox partner proteins putidaredoxin (Pd) and putidaredoxin reductase (PdR). Purified CYP119 protein showed a tight binding affinity to lauric acid ($K_d=1.1{\pm}0.1{\mu}M$) and dominantly hydroxylated (${\omega}-1$) position of lauric acid. We determined the steady-state kinetic parameters; $k_{cat}$ was 10.8 $min^{-1}$ and $K_m$, was 12 ${\mu}M$. The increased ratio to $\omega$-hydroxylated production of lauric acid catalyzed by CYP119 was observed with increase in the reaction temperature. These studies suggested that the regioselectivity of CYP119 provide the critical clue for the physiological enzyme function in this thermophilic archaebacteria. In addition, regioselectivity control of CYP119 without altering its thermostability can lead to the development of novel CYP119-based catalysts through protein engineering.

Association between Genetic Polymorphisms of the CYP2C19, CYP2D6 and Types of Sasang Constitutional Medicine (약물대사효소 CYP2C19, CYP2D6의 다형성과 사상체질의 관련성 연구)

  • Lee, Sang-Gyu;Kim, Hyun-Ju;Park, Hye-Jung;Lee, Jung-Ho;Kwon, Deog-Yun;Joo, Jong-Cheon;Choi, Sun-Mi;Lee, Hye-Suk;Kim, Yun-Kyung
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.51-62
    • /
    • 2007
  • Objectives . The types of Sasang constitutional medicine (SCM) have definite effect on response to herbal drugs. The majority of human P45O dependent xenobiotic metabolism is carried out by polymorphic enzymes which can cause abolished, altered or enhanced metabolism. Therefore, we evaluated the relation of major CYP2C19, 2D6 polymorphism with Sasang types. Methods : 214 healthy subjects were recruited with informed consent; 172 among them had Sasang diagnosis by QSCC2. CYP2D6, 2C19 polymorphism were determined by PCR-RFLP method. Results : None of the Sasang types showed significant difference in CYP2D6, 2C19 polymorphism. However, the Tae-um type showed relatively low frequency of CYP2D6 $^{*}$10/$^{*}$10 polymorphisms with low activity (p=0.110). In the So-yang type, specific $^{*}$3/$^{*}$3 genotype which is a poor metabolizer of CYP2C19$^{*}$3 was detected (p=0.078).Conclusion . These results suggest that the Tae-um type which is said to have high liver function in SCM has the tendency of high drug-metabolizing enzyme activity. With further study, the CYP polymorphism could serve as a scientific tool for SCM diagnosis.

  • PDF

Characterization of a Biflaviolin Synthase CYP158A3 from Streptomyces avermitilis and Its Role in the Biosynthesis of Secondary Metabolites

  • Lim, Young-Ran;Han, Songhee;Kim, Joo-Hwan;Park, Hyoung-Goo;Lee, Ga-Young;Le, Thien-Kim;Yun, Chul-Ho;Kim, Donghak
    • Biomolecules & Therapeutics
    • /
    • v.25 no.2
    • /
    • pp.171-176
    • /
    • 2017
  • Streptomyces avermitilis produces clinically useful drugs such as avermectins and oligomycins. Its genome contains approximately 33 cytochrome P450 genes and they seem to play important roles in the biosynthesis of many secondary metabolites. The SAV_7130 gene from S. avermitilis encodes CYP158A3. The amino acid sequence of this enzyme has high similarity with that of CYP158A2, a biflaviolin synthase from S. coelicolor A3(2). Recombinant S. avermitilis CYP158A3 was heterologously expressed and purified. It exhibited the typical P450 Soret peak at 447 nm in the reduced CO-bound form. Type I binding spectral changes were observed when CYP158A3 was titrated with myristic acid; however, no oxidative product was formed. An analog of flaviolin, 2-hydroxynaphthoquinone (2-OH NQ) displayed similar type I binding upon titration with purified CYP158A3. It underwent an enzymatic reaction forming dimerized product. A homology model of CYP158A3 was superimposed with the structure of CYP158A2, and the majority of structural elements aligned. These results suggest that CYP158A3 might be an orthologue of biflaviolin synthase, catalyzing C-C coupling reactions during pigment biosynthesis in S. avermitilis.

Regulation of Hippo-YAP AXIS and CYP450 enzymes by herbal pharmaceuticals, Ojeok-san (Human Hippo-YAP AXIS 및 CYP450에 미치는 오적산의 영향)

  • Bae, Su Jin;Yun, Un-Jung;Bak, Seon-Been;Song, Yu-Rim;Kim, Choon-Ok;Kang, Hyung Won;Kim, Young Woo
    • Herbal Formula Science
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Objectives : This study investigated the protective effect of Ojeok-san (OJS) on cellular damage induced by oxidative stress and whether it induces changes in CYP450 expression. Methods : To investigate the protective effect, we used cells stimulated by oxidative stress caused by the combination treatment of AA+iron. Changes in CYP450 expression were detected by immunoblotting analysis using Huh7 cells. Results : We observed that OJS altered the expression of CYP1A2, CYP3A4, CYP2C19, CYP2D6, and CYP2E1. OJS increased cell viability against AA+iron-induced oxidative stress and inhibited mitochondrial dysfunction. OJS increased phosphorylation of LKB1, phosphorylation of AMPK, and phosphorylation of ACC, which are related to the LKB1-AMPK pathway. In addition, phosphorylation of LATS1 and phosphorylation of YAP, which are related to the Hippo-YAP pathway, were increased. Conclusions : Our results show that OJS has 1) the ability to protect hepatocytes against oxidative stress, and 2) the potential to induce changes in CYP450.

Preferential Induction of CYP1A1 over CYP1B1 in Human Breast Cancer MCF-7 Cells after Exposure to Berberine

  • Wen, Chun-Jie;Wu, Lan-Xiang;Fu, Li-Juan;Shen, Dong-Ya;Zhang, Xue;Zhang, Yi-Wen;Yu, Jing;Zhou, Hong-Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.495-499
    • /
    • 2014
  • Estrogens are considered the major breast cancer risk factor, and the carcinogenic potential of estrogens might be attributed to DNA modification caused by derivatives formed during metabolism. $17{\beta}$-estradiol ($E_2$), the main steroidal estrogen present in women, is metabolized via two major pathways: formation of 2-hydroxyestradiol (2-OH $E_2$) and 4-hydroxyestradiol ($4-OH\;E_2$) through the action of cytochrome P450 (CYP) 1A1 and 1B1, respectively. Previous reports suggested that $2-OH\;E_2$ has putative protective effects, while $4-OH\;E_2$ is genotoxic and has potent carcinogenic activity. Thus, the ratio of $2-OH\;E_2/4-OH\;E_2$ is a critical determinant of the toxicity of $E_2$ in mammary cells. In the present study, we investigated the effects of berberine on the expression profile of the estrogen metabolizing enzymes CYP1A1 and CYP1B1 in breast cancer MCF-7 cells. Berberine treatment produced significant induction of both forms at the level of mRNA expression, but with increased doses produced 16~ to 52~fold greater induction of CYP1A1 mRNA over CYP1B1 mRNA. Furthermore, berberine dramatically increased CYP1A1 protein levels but did not influence CYP1B1 protein levels in MCF-7 cells. In conclusion, we present the first report to show that berberine may provide protection against breast cancer by altering the ratio of CYP1A1/CYP1B1, could redirect $E_2$ metabolism in a more protective pathway in breast cancer MCF-7 cells.