• Title/Summary/Keyword: CWR track

Search Result 85, Processing Time 0.026 seconds

The Study on the Behavior of Curved CWR Track under Thermal Load (곡선부 장대레일 궤도의 거동 특성에 관한 연구)

  • Lee, Won-Gyeong;Sung, Deok-Yong;Kim, Man-Cheol;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.426-436
    • /
    • 2006
  • The use of the CWR track has increased consistently in the worldwide. Because the use of CWR track not only reduces the track maintenance cost, noise and vibration, but increases the life cycle of track components. Therefore, to increase train speed, improve riding condition and secure running stability, the necessity of study on making CWR is increasing. This study includes the development of a thermal buckling theory in the evaluation of curved track stability. The lateral stability of curved CWR is studied for track buckling prevention through the parameter studies. It studied the lateral buckling of the curved CWR track on the 3-D nonlinear analysis. The parameters include rail size, cant, track curvature.

  • PDF

An Experimental Study of Fastening System on CWR(Continuous Welded Rail) Track Stability (장대레일 궤도의 안정성에 미치는 체결장치의 실험적 연구)

  • Kim, Jung-Hun;Han, Sang-Yun;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.317-324
    • /
    • 2007
  • Until now, the railway has been constructed using track with jointed rails of relatively short lengths to allow thermal expansion in hot summer months. These joints weaken the track structurally and increase track maintenance cost and power consumption of the running train. The CWR(Continuous Welded Rail) Track is the solution of these drawbacks. Although the CWR track not only reduces the track maintenance cost but also increases the life cycle of track components, the stability of the track is highly affected by change of temperatures and vehicle load. A three dimensional nonlinear analysis which considers rail, fastening system and tie has been performed to understand structural behavior of the CWR track. In this case, the translational and rotational stiffness values of fastening system have not been studied. The fastening system makes ties and rails connect. In this study, the stiffness values of various types of fastening systems which consist of clips, rail-pads and insulators are determined by the experiment. The experimental results of the fastening system are compared with the results of parametric study that is performed to investigate the sensitivity of fastening system on stability of CWR track.

  • PDF

Effect of Track Resistance on Linear Thermal Buckling Characteristics of CWR (도상이 장대 레일의 선형 온도 좌굴에 미치는 영향)

  • 강영종;임남형;신정렬;양재성
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.580-587
    • /
    • 1998
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads and speeds by improving rolling, welding, and fastening technology, Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal and vehicle loads. Thermal loads are caused by an increase in the temperature of railway track. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method(FEM). The finite element discretization is used with a total of 14 degrees of freedom for each rail element. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in the paper.

  • PDF

Buckling Parameters of CWR Track: Fastner, Uplift of Tie (장대레일 좌굴 변수 : 채결재, 칠목들림)

  • Han Sang-Yun;Lim Nam-Hyung;Han Taek-Hee;Kang Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.763-768
    • /
    • 2004
  • CWR(Continuous Welded Rail) has many advantage over the conventional jointed rail track. The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress. Despite the importance, the number of studies relevant to the instability is quite limited. In this paper, It considers the contribution of rail-pad-fastener resistance, uplift of tie and nonlinear analysis. Influence of various track components on CWR track temperature and mode shape were characterized.

  • PDF

Buckling Sensitivity of CWR Tracks according to the Characteristics of the Probability Distribution of the Lateral Ballast Resistance (도상횡저항력의 확률분포 특성에 따른 CWR 궤도의 좌굴 민감도)

  • Yun, Kyung-Min;Bae, Hyun-Ung;Kang, Tae-Ku;Kim, Myoung-Su;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.423-426
    • /
    • 2011
  • The excessive axial load occurred in an immovable zone of continuous welded rail(CWR) tracks threatens the security of running trains due to the track buckling in extreme hot summer. The influence factors, such as rail temperature for compressive stress, ballast resistance for track stiffness and initial imperfection of track for tracks irregularity are uncertain track parameters that are randomly varied by climate conditions, operating conditions and maintenance of track etc. So, buckling of CWR tracks has very high uncertainties. Therefore, applying the probabilistic approach method is essential in order to rationally consider the uncertainty and randomness of the various parameters. In this study, buckling sensitivity analysis was carried out with respect to the characteristics of probability distribution of lateral ballast resistance using the buckling probability evaluation system of CWR tracks developed by our research team.

  • PDF

Sensitivity of the Continuous Welded Rail and the Fastener on the Track Stability (궤도 안정성에 대한 장대레일과 체결구의 민감도)

  • Han, Sang Yun;Park, Nam Hoi;Lim, Nam Hyoung;Kang, Young Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.719-726
    • /
    • 2006
  • The use of CWR track not only reduces the track maintenance cost, but increase the life cycle of track components. Therefore, the use of the CWR track has increased consistently in the worldwide. As the use of CWR increases in track structures, derailing disasters associating with track buckling also increase in great numbers due to high compressive thermal stress in the summer. Among many CWR parameters, the influence of the sectional properties of the rail was investigated on the stability of CWR track in this study. Also, the sensitivity of the broken fastener and the stiffness of the fastener system such as the translational and rotational stiffness was investigated.

Stability of Continuous Welded Rail Track under Thermal Load (온도하중을 고려한 장대레일 궤도의 안정성 해석)

  • Kang, Young Jong;Lim, Nam Hyoung;Shin, Jeong Ryol;Yang, Jae Seong
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.3 s.40
    • /
    • pp.281-290
    • /
    • 1999
  • For many decades, the railway was constructed using tracks with jointed rails of relatively short lengths in accordance with rolling and handling technology. The joints cause many drawbacks in the track and lead to significant maintenance cost. So, railroad engineers became interested in eliminating joints to increase service loads ana speeds by improving rolling, welding, and fastening technology. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. But, in the case of the elimination of rail joints, it may cause the track to be suddenly buckled laterally by thermal loads. In this paper, CWR track model and CWRB program are developed for linear buckling analysis using finite element method. Rail element with a total of 14 degrees of freedom is used. The stiffness of the fastener, tie, and ballast bed are included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented.

  • PDF

Analysis of CWR Track Considering Wheel Loads (열차하중을 고려한 장대레일 궤도 해석)

  • Han, Sang-Yun;Kang, Young-Jong;Han, Teak-Hee;Lim, Nam-Hyoung;Kim, Jung-Hun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2487-2492
    • /
    • 2011
  • At high rail temperature above the neutral temperature, high compressive axial stresses will occur in the rails. High thermal axial force and vehicle loads cause the track to shift in a lateral direction and the formation of track geometry imperfections (track irregularity). When the thermal stress level and track irregularity with vehicle load reach a critical value, the track loses stability. In many studies, the stability of CWR tracks is analyzed. However these studies are only considered in temperature load. The main objective of this investigation was to estimate a new, comprehensive, realistic, the stability of CWR tracks considering wheel load. The ballast resistance is changed by wheel load. When the wheel load is applied, rails and ties are moved upward or downward. In this case the friction between ties and ballasts is decreased or increased. In this study the change of the ballast resistance of each tie was applied to the nonlinear analysis of CWR tracks.

  • PDF

A Comparative Study between the Deterministic and Probabilistic Approach Analysis on Buckling Stability of CWR Tracks (CWR 궤도의 좌굴 안정성에 대한 결정론적 해석과 확률론적 해석 비교)

  • Bae, Hyun-Ung;Choi, Jin-Yu;Shin, Jeong-Sang;Kim, Jong-Jung;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.988-992
    • /
    • 2011
  • The buckling characteristics of the continuous welded rail track(CWR) is uncertainly varied by many influence factors, such as rail temperature, operating conditions of a train and maintenance of the track etc. Therefore, applying the probabilistic approach method is essential to rationally consider uncertainty and randomness of the various parameters that affect the track buckling. In this study, the probabilistic approach analysis was carried out and the results were compared with the deterministic approach using the buckling probability evaluation system of CWR tracks developed by our research team. From the comparison, it was identified that a probabilistic approach can quantitatively assess the reliability of the CWR tracks based on failure probability and can be used as a tool for decision making in track design, maintenance and operating etc.

  • PDF

Thermal Buckling Analysis of Continuous Welded Rail Track (장대 레일의 온도 좌굴 해석)

  • 신정렬;임남형;양재성;강영종
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.433-440
    • /
    • 1998
  • For many decades, railroad technology was used to set up tracks with jointed rails and lengths in accordance with rolling and handling technology. The joints lead to drawbacks in the track and in controlling rising maintenance costs. So, railroad engineers became interested in eliminating joints to increase loads, speeds and improvements in rolling, welding, and fastening technology. Continuous welded rail(CWR) track has many advantages over the conventional jointed-rail track. In the case of the elimination of rail joints, it may cause the track to be suddenly and laterally buckled by thermal forces and vehicle load. Thermal forces are caused by an increase in the temperature of railway track. For many years, many analytical and experimental investigations have been conducted to improve the safety of CWR track by various research center in many country. In this paper, CWR track model and CWRB program is developed for buckling analysis using finite element method(FEM). The finite element discretization is used for a rail element with a total of 14 degrees of freedom. The stiffness of the fasteners, tie, and ballast bed is included by a set of spring elements. The investigation on the buckling modes and temperature of CWR track is presented in this paper

  • PDF