• Title/Summary/Keyword: CW laser

Search Result 290, Processing Time 0.026 seconds

Study of Damage in Germanium Optical Window Irradiated by a Near-infrared Continuous Wave Laser (근적외선 연속발진 레이저 조사에 의한 게르마늄 광학창 손상 연구)

  • Lee, Kwang Hyun;Shin, Wan-Soon;Kang, Eung-Cheol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.82-89
    • /
    • 2014
  • The damage in germanium (Ge) optical window irradiated by a near-infrared continuous wave (CW) laser was studied. Laser-induced heating and melting process were surveyed, and the specific laser power and the irradiance time to melt were estimated by numerical simulation. The experiments were also carried out to investigate the macro and micro structure change on Ge window. Results showed that the surface deformation was formed by melting and resolidification process, the damaged surface had a polycrystalline phase, and the transmittance as an optical performance factor in mid-infrared region was decreased. We confirmed that an abnormal polycrystalline phase and surface deformation effect such as hillock formation and roughness increase reduced the transmittance of Ge window and were the damage mechanism of CW laser induced damage on Ge window.

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

Imaging Technique Based on Continuous Terahertz Waves for Nondestructive Inspection (비파괴검사를 위한 연속형 테라헤르츠 파 기반의 영상화 기술)

  • Oh, Gyung-Hwan;Kim, Hak-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.328-334
    • /
    • 2018
  • The paper reviews an improved continuous-wave (CW) terahertz (THz) imaging system developed for nondestructive inspection, such as CW-THz quasi-time-domain spectroscopy (QTDS) and interferometry. First, a comparison between CW and pulsed THz imaging systems is reported. The CW-THz imaging system is a simple, fast, compact, and relatively low-cost system. However, it only provides intensity data, without depth and frequency- or time-domain information. The pulsed THz imaging system yields a broader range of information, but it is expensive because of the femtosecond laser. Recently, to overcome the drawbacks of CW-THz imaging systems, many studies have been conducted, including a study on the QTDS system. In this system, an optical delay line is added to the optical arm leading to the detector. Another system studied is a CW-THz interferometric imaging system, which combines the CW-THz imaging system and far-infrared interferometer system. These systems commonly obtain depth information despite the CW-THz system. Reportedly, these systems can be successfully applied to fields where pulsed THz is used. Lastly, the applicability of these systems for nondestructive inspection was confirmed.

Development of a Broad-Band CO laser for the Laser Magnetic Resonance Spectrometer (레이저 자기공명 분광기용 광대역 CO 레이저의 개발)

  • 김용평
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 1989.02a
    • /
    • pp.70-72
    • /
    • 1989
  • The laser magnetic resonance (LMR) which makes use of paramagnetic properties of transient species is a powerful technique for the study of molecular radical ions. A liquid nitrogen cooled cw CO laser is developed for the LMR spectrometer in the mid-infrared region of the spectrum. The laser mid-infrared region of the spectrum. The laser system is designed to allow broad-band operation from 5 to 8${\mu}{\textrm}{m}$. The design details will be presented.

  • PDF

Wavelength stabilized high power cw DFB laser module for DWDM transmission (DWDM 송신을 위한 파장안정화 고출력 DFB LD Module)

  • 김종덕;이희태;박경현;송만규;강승구
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.3
    • /
    • pp.206-209
    • /
    • 2000
  • A wavelength stabilized high power CW DFB LD module was designed and fabricated for use in externally modulated, Dense Wavelength Division Multiplex (DWDM) systems. A simple, compact wavelength monitoring technology using a thin solid Etalon and PD array assembly was developed for a low cost wavelength stabilized DFB LD module. Also, the excellent module have high power characteristic of 13.5 mW in CW 100 mA current injection with high optical coupling coefficient over 43%. r 43%.

  • PDF

Analysis of RBC Damage Using Laser Tweezers Raman Spectroscopy (LTRS) During Femtosecond Laser Optical Trapping (레이저 트위저 라만 분광을 이용한 펨토초 광포획 동안의 적혈구 손상 분석)

  • Ju, Seong-Bin;Pyo, Jin-U;Jang, Jae-Yeong;Lee, Seung-Deok;Kim, Beop-Min
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2008.02a
    • /
    • pp.453-454
    • /
    • 2008
  • femtosecond laser를 광원으로 하는 optical tweezers는 광포획 뿐만 아니라 비선형 현상을 발생시킬 수 있다는 장점을 가지고 있다. 그러나 높은 첨두 출력에 의하여 포획된 세포는 쉽게 손상되어 질 수 있다. 본 논문에서는 LTRS(Laser Tweezers Raman Spectroscopy)를 통하여 femtosecond laser와 CW laser에 의한 optical tweezers 상에서의 optical damage를 비교, 분석하였다.

  • PDF

CW $CO_2$ Laser Beam Welding and Formability of Zn-Coated Steel Plates (아연도금강판의 CW $CO_2$ 레이저 용접 및 성형성)

  • Suh, J.;Han, Y.H.;Yoon, C.S.;Bang, S.Y.
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • Continuous wave C $O_{2}$ laser beam welding and formability of zinc coated steel plates were investigated. First, the optimal welding condition could be obtained in lap configuration by using the data for heat input, gap size and fracture behaviour. The gap size for fully-penetrated bead could be predicted by the gap model by Akhter et al. AIso, it was found that the joining efficiency was constant. Secondly, the butt welding of dissimilar materials (zinc coated steel plate and cold rolled steel plate) with different thicknesses was investigated. In the thickness range of 0.8-2.0 mm, the maximum welding speed of 10m/min was obtained. In the butt welding of two plates with thickness 2.0 mm and l.6mm, the maximum, welding speed of 6m/min was obtained, Finally. the forming results of butt-welded plates showed that the joining design was important to apply the laser welded blank in the automotive production.

  • PDF

Study on a cavity ring-down spectrometer with continuous wave laser sources (연속발진 레이저를 이용한 공동 광자감쇠 분광기 연구)

  • 유용심;한재원;김재완;이재용;이해웅
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.240-244
    • /
    • 1998
  • Cavity ring-down spectroscopy (CRDS) is a high-sensitive laser spectroscopic technique capable of measuring concentrations of trace gases. We have demonstrated a new design of the CRDS spectrometer with a continuous wave (CW) laser. The ring-dwon signal is produced through blocking the incident CW laser by scanning the cavity length fast toward off-resonance iwth PZT (piezoelectric transducer). We have also measured an absorption spectrum of acetylene overtone transitions near 570 nm at the pressure of 2700 Pa, and the minimum detectable absorption coefficient has been found to be about $3{\times}10^{-9}\cm^{-1}$.

  • PDF