• 제목/요약/키워드: CVD method

검색결과 400건 처리시간 0.031초

플라즈마 화학기상증착법으로 성장시킨 수소화 비정질 규소박막의 결정화 (Crystallization of a-Si : H thin films deposited by RF plasma CVD method)

  • 김용탁;장건익;홍병유;서수정;윤대호
    • 한국결정성장학회지
    • /
    • 제11권2호
    • /
    • pp.56-59
    • /
    • 2001
  • RF plasma CVD법에 의해 증착된 비정질 실리콘 박막은 Si(100)웨이퍼와 유리에 각각 증착되었다. 본 연구에서는 RF power가 미세결정 실리콘 박막의 광학적 밴드갭($E_g$),투과도 그리고 결정성에 미치는 영향을 조사하였다 라만 분광분석 결과 미세결정 실리콘은 480과 520$cm^{-1}$에서 두개의 피크 즉, 비정질과 미세결정의 혼상으로 구성되어 있음을 확인할 수 있었고 XRD분석에서도 (111)방향의 피크가 RF power 300W에서 관찰되었다. 또한, 박막의 투과도는 자외/가시부 분광 광도계를 이용하였으며, 적외 흡광 스펙트럼을 사용하여 실리콘과 결합하고 있는 수소의 형태를 고찰하였다.

  • PDF

심혈관질환자의 영양교육이 자기효능감, 식행동양상 및 심혈관 위험요인에 미치는 효과 (Effects of the Nutrition Education Program on Self-efficacy, Diet Behavior Pattern and Cardiovascular Risk Factors for the Patients with Cardiovascular Disease)

  • 주경옥;소희영
    • 대한간호학회지
    • /
    • 제38권1호
    • /
    • pp.64-73
    • /
    • 2008
  • Purpose: This study examined the effects of a nutrition education program on self-efficacy, diet behavior pattern and cardiovascular risk factors for patients with cardiovascular disease (CVD). Method: Sixty-four CVD subjects (37 experimental, 27 control) were recruited from a cardiac center, at a university hospital located in D city, Korea. All subjects attended a first heart camp where pretest measures were performed, and a second heart camp at 6 months for the posttest measures. During the 6 month study period, the experimental group was required to attend five monthly nutrition education sessions, while the control group received only routine outpatient follow-ups. Data were analyzed by $x^2$-test and independent t-test using the SPSSWIN 11.5 program. Result: Group comparisons revealed that the experimental group had significantly more improved self-efficacy, frequency of food selection, gustation of salt, systolic blood pressure, and serum total-cholesterol compared to the control group. Conclusion: A nutrition education program may be effective in improving self-efficacy, diet behavior pattern and cardiovascular risk factors for patients with cardiovascular disease.

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

나노 디바이스 응용을 위한 탄소나노튜브 성장 특성 (Growth of Carbon Nanotubes for Nano Device Application)

  • 박용욱;이승대
    • 한국컴퓨터산업학회논문지
    • /
    • 제8권1호
    • /
    • pp.17-22
    • /
    • 2007
  • 본 연구에서는 선택적 영역에서 반도체 성질을 갖는 탄소나노튜브을 합성하기 위해 촉매의 구조 및 형태가 탄소나노튜브의 성장에 미치는 영향을 연구하였다. CVD 방법으로 Fe와 Mo 전이 금속을 알루미나 나노 입자속에 삽입한 액상형태의 촉매구조와 박막형태의 나노 덩어리 Fe 금속박막을 증착한 후 실리콘 산화막$(SiO_2/Si)$ 기판에 $700^{\circ}C$ 온도에서 에틸렌$(C_2H_4)$가스를 사용하여 디바이스 사이에 정렬된 탄소나노튜브의 합성 연구를 수행 하였으며, 탄소나노튜브의 성장특성은 SEM과 AFM을 이용하여 분석하였다.

  • PDF

Electrical Conductivity of a $TiO_2$ Thin Film Deposited on $Al_2O_3$ Substrates by CVD

  • Hwang, Cheol-Seong;Kim, Hyeong-Joon
    • The Korean Journal of Ceramics
    • /
    • 제1권1호
    • /
    • pp.21-28
    • /
    • 1995
  • Electrical conductivity of $TiO_2$ thin films, deposited on $Al_2O_3$ substrates by metal organic chemical vapor deposition (MOCVD), was measured by four-point probe method in a temperature range from $800^{\circ}C$ to $1025^{\circ}C$ and an oxygen partial pressure range from $2.7{\times}10^{-5}$ atm to 1 atm. In the low oxygen partial pressure region n-type conduction was dominant, but in the high oxygen partial pressure region p-type conduction behavior appeared due to substitution of Ti ions by Al ions, which were diffused from the substrate during post deposition annealing process. Electrical conductivity of the film decreases in the n-type region and increases in the p-type region as the oxygen partial pressure increases. The transition points, which show the minimum conductivity, shifted to the higher oxygen partial pressure region as the measuring temperature increased, but it shifted to lower oxygen partial pressure region with an increase in the post annealing temperature. The results were also discussed with the possible defect models.

  • PDF

SiC/C 경사기능재료의 열충격 시험과 열응력 모사 (Thermal shock test of SiC/C functionally graded materials (FGM) and thermal stress simulation)

  • 김유택;이성철;최근혁
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.612-618
    • /
    • 1998
  • $SiCl_4/C_3H_8/H_2$계를 사용하여 흑연기판 위에 순수한 SiC층과 SiC/C FGM층을 CVD법에 의해 증착한 후 thermal shock 시험을 통하여 두 시편의 열적 성질을 조사하였다. Thermal shock 시험시 두가지 시편 내부의 이론적인 열응력 차이를 알아보기 위해 상용프로그램을 이용하여 시편내의 온도분포, 열응력 분포를 계산하였다. SiC/C FGM층을 증착한 시편이 순수한 SiC층을 증착한 시편보다 계산상으로 경계면에서 우수한 열응력 완화효과를 나타내는 것으로 판단되었고 실험적으로로 FGM 시편의 경우 $\Delta$T=1600K의 열충격에도 견딜수 있는 것을 확인하여 이론과 실험이 일치하는 것을 입증하였다.

  • PDF

Nitrogen Incorporation of Nanostructured Amorphous Carbon Thin Films by Aerosol-Assisted Chemical Vapor Deposition

  • Fadzilah, A.N.;Dayana, K.;Rusop, M.
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권4호
    • /
    • pp.165-171
    • /
    • 2013
  • Nanostructured pure a-C and nitrogen doped a-C: N thin films with small particle size of, ~50 nm were obtained by Aerosol-assisted CVD method from the natural precursor camphor oil. Five samples were prepared for the a-C and a-C: N respectively, with the deposition temperatures ranging from $400^{\circ}C$ to $600^{\circ}C$. At high temperature, the AFM clarifies an even smoother image, due to the increase of the energetic carbon ion bombardment at the surface of the thin film. An ohmic contact was acquired from the current-voltage solar simulator characterization. The higher conductivity of a-C: N, of ${\sim}{\times}10^{-2}Scm^{-1}$ is due to the decrease in defects since the spin density gap decrease with the nitrogen addition. Pure a-C exhibit absorption coefficient, ${\alpha}$ of $10^4cm^{-1}$, whereas for a-C:N, ${\alpha}$ is of $10^5cm^{-1}$. The high ${\sigma}$ value of a-C:N is due to the presence of more graphitic component ($sp^2$ carbon bonding) in the carbon films.

Laser Crystallization of a-Si:H films prepared at Ultra Low Temperature($<150^{\circ}C$) by Catalytic CVD

  • Lee, Sung-Hyun;Hong, Wan-Shick;Kim, Jong-Man;Lim, Hyuck;Park, Kuyng-Bae;Cho, Chul-Lae;Lee, Kyung-Eun;Kim, Do-Young;Jung, Ji-Sim;Kwon, Jang-Yeon;Noguch, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1116-1118
    • /
    • 2005
  • We studied laser crystallization of amorphous silicon films prepared at ultra low temperatures ($<150^{\circ}C$). Amorphous silicon films having a low content of hydrogen were deposited by using catalytic chemical vapor deposition method. Influence of process parameters on the hydrogen content was investigated. Laser crystallization was performed dispensing with the preliminary dehydrogenation process. Crystallization took place at a laser energy density value as low as $70\;mJ/cm^2$, and the grain size increased with increasing the laser energy. The ELA crystallization of Catalytic CVD a-Si film is a promising candidate for Poly-Si TFT in active-matrix flexible display on plastic substrates.

  • PDF

The Electrochemical Characteristics of Surface-modified Carbonaceous Materials by tin Oxides and Copper for Lithium Secondary Batteries

  • Lee, Joong-Kee;Ryu, D.H.;Shul, Y.G.;Cho, B.W.;Park, D.
    • Carbon letters
    • /
    • 제1권3_4호
    • /
    • pp.170-177
    • /
    • 2001
  • Lithium intercalated carbon (LIC) are basically employed as an anode for currently commercialized lithium secondary batteries. However, there are still strong interests in modifying carbon surface of active materials of the anode because the amount of irreversible capacity, charge-discharge capacity and high rate capability are largely determined by the surface conditions of the carbon. In this study, the carbonaceous materials were coated with tin oxide and copper by fluidized-bed chemical vapor deposition (CVD) method and their coating effects on electrochemical characteristics were investigated. The electrode which coated with tin oxides gave the higher capacity than that of raw material. Their capacity decreased with the progress of cycling possibly due to severe volume changes. However, the cyclability was improved by coating with copper on the surface of the tin oxides coated carbonaceous materials, which plays an important role as an inactive matrix buffering volume changes. An impedance on passivation film was decreased as tin oxides contents and it resulted in the higher capacity.

  • PDF

Parametric Study of Methanol Chemical Vapor Deposition Growth for Graphene

  • Cho, Hyunjin;Lee, Changhyup;Oh, In Seoup;Park, Sungchan;Kim, Hwan Chul;Kim, Myung Jong
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.205-211
    • /
    • 2012
  • Methanol as a carbon source in chemical vapor deposition (CVD) graphene has an advantage over methane and hydrogen in that we can avoid optimizing an etching reagent condition. Since methanol itself can easily decompose into hydrocarbon and water (an etching reagent) at high temperatures [1], the pressure and the temperature of methanol are the only parameters we have to handle. In this study, synthetic conditions for highly crystalline and large area graphene have been optimized by adjusting pressure and temperature; the effect of each parameter was analyzed systematically by Raman, scanning electron microscope, transmission electron microscope, atomic force microscope, four-point-probe measurement, and UV-Vis. Defect density of graphene, represented by D/G ratio in Raman, decreased with increasing temperature and decreasing pressure; it negatively affected electrical conductivity. From our process and various analyses, methanol CVD growth for graphene has been found to be a safe, cheap, easy, and simple method to produce high quality, large area, and continuous graphene films.