Lee, Dong Hun;Park, Ik Kyu;Yoon, Han Young;Ha, Kwang Soon;Jeong, Jae Jun
에너지공학
/
제22권1호
/
pp.8-16
/
2013
A core catcher is considered as a promising engineered system to stabilize the molten corium in the containment during a postulated severe accident in a nuclear power plant. Conceptually, the core catcher consists of a carbon steel body, sacrificial material, protection material, and engineered cooling channel. The cooling capacity of the engineered cooling channel should be guaranteed to remove the decay heat of the molten corium. The flow in ex-vessel core catcher is a combined problem of a two-phase flow in the engineered cooling channel and a single-phase natural circulation in the whole core catcher system. In this study, the analysis of the test facility for the core catcher using the CUPID code, which is a three-dimensional thermal-hydraulic code for the simulation of two-phase flows, was carried out to evaluate its cooling capacity.
A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation or condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure distribution that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new reconstruction method to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function, a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the CUPID code.
A thermal-hydraulic code, named CUPID, has been developed for the analysis of transient two-phase flows in nuclear reactor components. A two-fluid three-field model was used for steam-water two-phase flows. To obtain numerical solutions, the finite volume method was applied over unstructured cell-centered meshes. In steam-water two-phase flows, a phase change, i.e., evaporation of condensation, results in a great change in the flow field because of substantial density difference between liquid and vapor phases. Thus, two-phase flows are very sensitive to the local pressure that determines the phase change. This in turn puts emphasis on the accurate evaluation of local pressure gradient. This paper presents a new numerical scheme to evaluate the pressure gradient at cell centers on unstructured meshes. The results of the new scheme for a simple test function a gravity-driven cavity, and a wall boiling two-phase flow are compared with those of the previous schemes in the cupid code.
In this study, three condensation models of the CUPID code, i.e., the resolved boundary layer approach (RBLA), heat and mass transfer analogy (HMTA) model, and an empirical correlation, were tested and validated against the COPAIN and CAU tests. An improvement on HMTA model was also made to use well-known heat transfer correlations and to take geometrical effect into consideration. The RBLA was a best option for simulating the COPAIN test, having mean relative error (MRE) about 0.072, followed by the modified HMTA model (MRE about 0.18). On the other hand, benchmark against CAU test (under natural convection and occurred on a slender tube) indicated that the modified HMTA model had better accuracy (MRE about 0.149) than the RBLA (MRE about 0.314). The HMTA model with wall function and the empirical correlation underestimated significantly, having MRE about 0.787 and 0.55 respectively. When using the HMTA model, consideration of geometrical effect such as tube curvature was essential; ignoring such effect leads to significant underestimation. The HMTA and the empirical correlation required significantly less computational resources than the RBLA model. Considering that the HMTA model was reasonable accurate, it may be preferable for large-scale simulations of containment.
Alatrash, Yazan;Cho, Yun Je;Song, Chul-Hwa;Yoon, Han Young
Nuclear Engineering and Technology
/
제54권6호
/
pp.2276-2296
/
2022
This study validates the applicability of the CUPID code for simulating subcooled wall boiling under high-pressure conditions against number of DEBORA tests. In addition, a new numerical technique in which the interfacial momentum non-drag forces are calculated at the cell faces rather than the center is presented. This method reduced the numerical instability often triggered by calculating these terms at the cell center. Simulation results showed good agreement against the experimental data except for the bubble sizes in the bulk. Thus, a new model to calculate the Sauter mean diameter is proposed. Next, the effect of the relationship between the bubble departure diameter (Ddep) and the nucleation site density (N) on the performance of the Wall Heat Flux Partitioning (WHFP) model is investigated. Three correlations for Ddep and two for N are grouped into six combinations. Results by the different combinations show that despite the significant difference in the calculated Ddep, most combinations reasonably predict vapor distribution and liquid temperature. Analysis of the axial propagations of wall boiling parameters shows that the N term stabilizes the inconsistences in Ddep values by following a behavior reflective of Ddep to keep the total energy balance. Moreover, ratio of the heat flux components vary widely along the flow depending on the combinations. These results suggest that separate validation of Ddep correlations may be insufficient since its performance relies on the accompanying N correlations.
가압 경수로의 주요 기기에서 발생할 수 있는 과도 2상 유동(Two-phase flow) 현상에 대한 해석을 수행하기 위해 원자로 기기 열수력 해석 코드를 개발 중에 있다. 개발 중인 기기 열수력 해석 코드는 지배 방정식으로 Two-phase, three-field model을 사용하고 있으며, 복잡한 기하학적 형상의 원자로 기기를 모사하기 위해 비정렬 격자계(Unstructured grid)를 활용하고 있다. 수치해석 기법으로는, 원자로 계통 해석코드 RELAP5가 사용 중이며 대부분의 원자로 내 2상 유동 조건에서 안정적이며 정확하다고 알려진 Semi-implicit 방법을 적용하였다. 그러나 기존의 Semi-implicit 방법은 1차원, 엇갈림격자(Staggered grid)에 대해 개발되었기 때문에, 이를 다차원, 비정렬, 비엇갈림 격자(Non-staggered grid)에 적용하기 위해 기존의 Semi-implicit 방법을 수정하였다. 본 논문에서는 Semi-implicit 방법의 대류항을 이차정확도를 갖도록 확장하였으며, 이차정확도에 의한 수치확산의 감소를 평가하기 위해 수행된 수치시험의 결과를 기술하였다. 이차정확도 및 일차정확도로 계산된 값을 해석해 또는 격자 수렴성 시험을 통해 평가해 본 결과, 이차정확도 계산시 수치 확산의 감소 확인하였다.
The standard drag force and virtual mass force, which exert to the primary flow direction, are generally considered in two-phase analysis computational codes. In this paper, the lift force, wall lubrication force, and turbulent dispersion force including turbulence models, which are essential for a computational multi-fluid dynamics model and play an important role in motion perpendicular to the primary flow direction, were introduced and verified with conceptual problems.
Steam line break accident (SLB) in the nuclear reactor is one of the representative Non-LOCA accidents in which thermal-hydraulics and neutron kinetics are strongly coupled each other. Thus, the multi-scale and multi-physics approach is applied in this study in order to examine a realistic safety margin. An entire reactor coolant system is modelled by system scale node, whereas sub-channel scale resolution is applied for the region of interest such as the reactor core. Fuel performance code is extended to consider full core pin-wise fuel behaviour. The MARU platform is developed for easy integration of the codes to be coupled. An initial stage of the steam line break accident is simulated on the MARU platform. As cold coolant is injected from the cold leg into the reactor pressure vessel, the power increases due to the moderator feedback. Three-dimensional coolant and fuel behaviour are qualitatively visualized for easy comprehension. Moreover, quantitative investigation is added by focusing on the enhancement of safety margin by means of comparing the minimum departure from nucleate boiling ratio (MDNBR). Three factors contributing to the increase of the MDNBR are proposed: Various geometric parameters, realistic power distribution by neutron kinetics code, Radial coolant mixing including sub-channel physics model.
The methods and performance of a pin-level nuclear reactor core thermal-hydraulics (T/H) code ESCOT employing the drift-flux model are presented. This code aims at providing an accurate yet fast core thermal-hydraulics solution capability to high-fidelity multiphysics core analysis systems targeting massively parallel computing platforms. The four equation drift-flux model is adopted for two-phase calculations, and numerical solutions are obtained by applying the Finite Volume Method (FVM) and the Semi-Implicit Method for Pressure-Linked Equation (SIMPLE)-like algorithm in a staggered grid system. Constitutive models involving turbulent mixing, pressure drop, and vapor generation are employed to simulate key phenomena in subchannel-scale analyses. ESCOT is parallelized by a domain decomposition scheme that involves both radial and axial decomposition to enable highly parallelized execution. The ESCOT solutions are validated through the applications to various experiments which include CNEN $4{\times}4$, Weiss et al. two assemblies, PNNL $2{\times}6$, RPI $2{\times}2$ air-water, and PSBT covering single/two-phase and unheated/heated conditions. The parameters of interest for validation include various flow characteristics such as turbulent mixing, spacer grid pressure drop, cross-flow, reverse flow, buoyancy effect, void drift, and bubble generation. For all the validation tests, ESCOT shows good agreements with measured data in the extent comparable to those of other subchannel-scale codes: COBRA-TF, MATRA and/or CUPID. The execution performance is examined with a mini-sized whole core consisting of 89 fuel assemblies and for an OPR1000 core. It turns out that it is about 1.5 times faster than a subchannel code based on the two-fluid three field model and the axial domain decomposition scheme works as well as the radial one yielding a steady-state solution for the OPR1000 core within 30 s with 104 processors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.