Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.533-538
/
2008
본 논문에서는 GPU의 성능을 이용하여 다시점 거리 영상을 실시간으로 정합하는 3차원 온라인 시스템을 제안한다. 제안한 시스템은 거리영상의 정교한 정합을 위해 IPP 알고리즘을 사용하였으며, 최신 GPU 프로그래밍 기법으로 각광받고 있는 CUDA를 이용하여 정합 알고리즘의 연산비용이 큰 부분에 해당하는 투영과 변환의 반복 부분을 수행하였다. 스테레오 기반 휴대용 거리센서에서 $320{\times}240$ 거리영상을 획득하여 정합 알고리즘을 수행한 결과, 초당 5장의 거리영상을 정합할 수 있었다. 제안한 온라인 시스템은 실시간 3차원 모델 복원 기술이 필요한 로봇위치 인식, 주행용 비전 기술, 문화재 원형 복원 등의 분야에서 활용될 수 있을 것이다.
Kim, Jung-Sik;Kim, Jong-Yoon;Kim, Jin-Mo;Cho, Hyung-Je
Proceedings of the Korean Information Science Society Conference
/
2011.06c
/
pp.369-372
/
2011
본 논문에서는 가상현실 및 게임, 로봇인지 분야에서 쓰일 수 있는 실시간 얼굴인식을 제안한다. 현대 사회는 영상처리 기술의 발달로 인하여 많은 자동화 시스템이 개발된다. 빠르게 발전하는 정보화 시대에 사람과 컴퓨터 사이의 상호작용(Interaction)은 매우 중요하며 보다 빠르고 정확한 시스템이 요구된다. 전통적인 얼굴인식 방법인 주성분 분석(PCA)은 영상의 크기에 따라 계산의 복잡도가 증가하고, 특징 벡터를 구하기 위해 많은 연산을 해야 하는 문제가 발생하지만 GPU를 이용할 경우 반복적 계산의 효율적 처리가 가능하여 뛰어난 성능을 낼 수 있는 장점이 있다. 본 논문에서는 이러한 범용 GPU사용 기술 중 nVidia에서 제공하는 CUDA를 활용한 실시간 얼굴 인식 시스템을 제안하고, 실험을 통해 성능을 검증한다.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.20
no.4
/
pp.277-293
/
2016
We develop an efficient numerical method for pricing the Derivative Linked Securities (DLS). The payoff structure of the hybrid DLS consists with a standard 2-Star step-down type ELS and the range accrual product which depends on the number of days in the coupon period that the index stay within the pre-determined range. We assume that the 2-dimensional Geometric Brownian Motion (GBM) as the model of two equities and a no-arbitrage interest model (One-factor Hull and White interest rate model) as a model for the interest rate. In this study, we employ the Monte Carlo simulation method with the Compute Unified Device Architecture (CUDA) parallel computing as the General Purpose computing on Graphic Processing Unit (GPGPU) technology for fast and efficient numerical valuation of DLS. Comparing the Monte Carlo method with single CPU computation or MPI implementation, the result of Monte Carlo simulation with CUDA parallel computing produces higher performance.
Myung, Hun-Joo;Sakamaki, Ryuji;Oh, Kwang-Jin;Narumi, Tetsu;Yasuoka, Kenji;Lee, Sik
Bulletin of the Korean Chemical Society
/
v.31
no.12
/
pp.3639-3643
/
2010
We have developed CUDA-enabled version of a general purpose molecular dynamics simulation code for GPU. Implementation details including parallelization scheme and performance optimization are described. Here we have focused on the non-bonded force calculation because it is most time consuming part in molecular dynamics simulation. Timing results using CUDA-enabled and CPU versions were obtained and compared for a biomolecular system containing 23558 atoms. CUDA-enabled versions were found to be faster than CPU version. This suggests that GPU could be a useful hardware for molecular dynamics simulation.
Proceedings of the Korea Information Processing Society Conference
/
2018.10a
/
pp.631-633
/
2018
최근 영상처리 분야에서 딥러닝(Deep learning)을 이용한 기술이 좋은 성능을 보이면서 이에 대한 관심과 연구가 증가하고 있다. 본 연구에서는 최근 딥러닝 네트워크 중 적은 파라미터 수로 AlexNet수준의 성능을 보인 SquezeNet을 영상 분할(Image segmentation)의 특징 추출(feature extraction)영역으로 사용하고, CUDA C기반으로 코드를 작성하여 정확도를 유지하면서 계산 속도 면에서도 좋은 성능을 얻을 수 있었다.
Proceedings of the Korea Information Processing Society Conference
/
2013.05a
/
pp.140-143
/
2013
본 논문에서는 데이터 병렬성이 뛰어난 벡터 기반의 Rasterization 알고리즘을 CUDA를 이용하여 코어 매핑에 따른 성능 및 에너지 효율을 분석해 보았다. 블록 사이즈를 동일하게 맞춘 후 블록의 차원을 변경 하는 방법과 블록 사이즈를 변경하는 방법을 사용하여 실험하였다. 모의실험결과, 블록 사이즈가 동일할 때는 오차 범위 내로 동일한 성능과 에너지 효율을 보였다. 아키텍처마다 모든 자원을 사용할수 있는 이론적인 블록 및 스레드 구조가 존재하지만 메모리 접근에 대한 최적화를 이루어 내지 못한다면 Amdahl's law에 의해 성능 향상에 한계가 있다는 것을 확인하였다.
Proceedings of the Korean Society of Computer Information Conference
/
2022.01a
/
pp.357-360
/
2022
본 논문에서는 대용량 데이터에서 빠르게 주변 데이터를 접근하기 위한 자료구조인 최근접 이웃 탐색(Nearest neighbor search, NNS) 문제를 빠르게 풀 수 있는 바이토닉 정렬(Bitonic sort) 기반 해시 테이블을 GPU기반에서 설계하는 방법과 이를 통해 입자 기반 물리 시뮬레이션을 고속화할 수 있는 방법에 대해 살펴본다. 본 논문에서는 CUDA 아키텍처를 이용하여 해시 테이블을 설계하였으며, 계산양이 가장 큰 데이터 정렬부분을 최적화함으로써 NVIDIA에서 제공하는 CUDA 해시 테이블보다 빠른 결과를 얻을 수 있으며, 이 자료구조를 입자 기반 시뮬레이션에 통합함으로써 고성능 시뮬레이션을 쉽게 제작할 수 있다.
Many algorithms for computer vision and pattern recognition have recently been implemented on GPU (graphic processing unit) for faster computational times. However, the implementation has two problems. First, the programmer should master the fundamentals of the graphics shading languages that require the prior knowledge on computer graphics. Second, in a job that needs much cooperation between CPU and GPU, which is usual in image processing and pattern recognition contrary to the graphic area, CPU should generate raw feature data for GPU processing as much as possible to effectively utilize GPU performance. This paper proposes more quick and efficient implementation of neural networks on both GPU and multi-core CPU. We use CUDA (compute unified device architecture) that can be easily programmed due to its simple C language-like style instead of GPU to solve the first problem. Moreover, OpenMP (Open Multi-Processing) is used to concurrently process multiple data with single instruction on multi-core CPU, which results in effectively utilizing the memories of GPU. In the experiments, we implemented neural networks-based text extraction system using the proposed architecture, and the computational times showed about 15 times faster than implementation on only GPU without OpenMP.
Journal of the Korea Academia-Industrial cooperation Society
/
v.16
no.4
/
pp.2749-2756
/
2015
Recently, Depending on the quality of data increases, the problem of time-consuming to process the image is raised by being required to accelerate the image processing algorithms, in a traditional CPU and CUDA(Compute Unified Device Architecture) based recognition system for computing speed and performance gains compared to OpenMP When character recognition has been learned by the system to measure the input by the character data matching is implemented in an environment that recognizes the region of the well, so that the font of the characters image learning English alphabet are each constant and standardized in size and character an image matching method for calculating the matching has also been implemented. GPGPU (General Purpose GPU) programming platform technology when using the CUDA computing techniques to recognize and use the four cores of Intel i5 2500 with OpenMP to deal quickly and efficiently an algorithm, than the performance of existing CPU does not produce the rate of four times due to the delay of the data of the partition and merge operation proposed a method of improving the rate of speed of about 3.2 times, and the parallel processing of the video card that processes a result, the sequential operation of the process compared to CPU-based who performed the performance gain is about 21 tiems improvement in was confirmed.
Proceedings of the Korean Society of Computer Information Conference
/
2011.01a
/
pp.269-272
/
2011
본 논문에서는 GPGPU를 이용한 눈 영역 검출 기법을 제안한다. 영상 전체의 평균과 분산을 기반으로 하여 각 마스크의 평균과 분산값을 비교는 비교적 간단한 알고리즘을 이용하여 눈 영역을 검출한다. 정확도의 경우 명암값의 대비를 이용한 기존의 방법과 비슷한 수준을 보였다. 하지만 연산속도의 경우 병렬처리 구간을 늘려 GPGPU를 사용한 제안된 방법이 우수한 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.