• Title/Summary/Keyword: CUBIC SPLINE

Search Result 261, Processing Time 0.024 seconds

Generation of Adaptive Walking Motion for Uneven Terrain (다양한 지형에서의 적응적인 걷기 동작 생성)

  • 송미영;조형제
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1092-1101
    • /
    • 2003
  • Most of 3D character animation adjusts the gait of their characters for various terrains, using motion capture data through the motion capture equipments. This motion capture data can be naturally presented as real human motions, which are to be adjusted according to the various types of terrain. In addition, there would be a difficulty applying motion capture data for other characters in which the motion data will be captured again or edited for the existing motion data. Therefore, this paper proposes a method that is to generate walking motion for various terrains, such as flat, inclined plane, stair, and irregular face, and a method that is to calculate the trajectory of the swing leg and pelvis. These methods are able to generate various gaits controlled by the parameters of body height, walking speed, stride, etc. In addition, the positions and angles of joint can be calculated by using inverse kinematics, and the cubic spline will be used to calculate the trajectory of the joint.

Flow Simulation of High Flow Concrete using Incompressible Smoothed Particle Hydrodynamics (ISPH) Method (ISPH 기법을 이용한 고유동 콘크리트의 유동 해석)

  • Kim, Sang-Sin;Chung, Chul-Woo;Lee, Chang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.1
    • /
    • pp.39-46
    • /
    • 2019
  • A three-dimensional flow simulation model for high flow concrete was developed using Incompressible Smoothed Particle Hydrodynamics (ISPH), which can solved Navier-Stokes equation with the assumption of a fluid to be incompressible. For the simulation, a computer program code for ISPH was implemented with MATALB programming code. A piecewise cubic spline function was used for the kernel function of ISPH. Projetion method was used to calculate the velocity and pressure of particles as a function of time. Fixed ghost particle was used for wall boundary condition. Free surface boundaries were determined by using virtual density of particles. In order to validate the model and the code, the simulation results of slump flow test, $T_{500}$ test and L-box test were compared with experimental ones. The simulation results were well matched with the experimental results. The simulation described successfully the characteristics of the flow phenomenon according to the change of the viscosity and yield stress of high flow concrete.

A comparative study of different radial basis function interpolation algorithms in the reconstruction and path planning of γ radiation fields

  • Yulong Zhang;Jinjia Cao;Biao Zhang;Xiaochang Zheng;Wei Chen
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2806-2820
    • /
    • 2024
  • Accurate reconstruction of radiation field and path planning are very important for the safety of operators in the process of dismantling nuclear facilities. Based on radial basis function (RBF) interpolation algorithm, this paper discussed the application of inverse multiquadric radial basis Function (IMRBF) interpolation method to the reconstruction of gamma radiation field, and proved the feasibility of reconstructing a radiation field with multiple γ sources. The average relative errors of IMRBF interpolation results were 4.28% and 8.76%, respectively, for the experimental scenarios with single and double gamma sources. After comparing the consistency between the simulated scene and the experimental scene, IMRBF method and Cubic Spline method were respectively used to reconstruct the gamma radiation field by Geant4 simulation data. The results showed that the interpolation accuracy of IMRBF method was superior to that of Cubic Spline method. Further, more RBF interpolation algorithms were used to reconstruct the multi-γ source radiation field, and then the Probabilistic Roadmap (PRM) algorithm was used to optimize the human walking path in the radiation field reconstructed by different interpolation methods. The optimal paths in radiation fields generated by multiple interpolation methods were compared. The results herein contribute to a comprehensive understanding of RBF interpolation methods in reconstructing γ radiation fields and their application in optimizing paths in radiation environments. The insights may provide valuable information for decision-making in radiation protection during the decommissioning of nuclear facilities.

A Study on Glass Tile Generation for Stained Glass Rendering (스테인드 글라스 렌더링을 위한 유리 타일 생성에 관한 연구)

  • Nah, Hyeon-Cheol;Gi, Yong-Jea;Yoon, Kyung-Hyun
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.1246-1251
    • /
    • 2006
  • 본 연구에서는 영역 분할 알고리즘과 3차 스플라인 보간법을 이용하여 스테인드 글라스 렌더링을 위한 개선된 유리 타일 생성 알고리즘을 제안하였다. 먼저 유리 타일의 초기 형태를 추출하기 위하여 입력 영상에 Mean shift 분할 알고리즘을 적용하였다. Mean shift 분할 알고리즘은 영상의 각 픽셀(pixel)에서의 지역 밀도 최대 점(local density maximum)을 찾아 클러스터링(clustering)하는 알고리즘으로 영상을 효과적으로 분할할 수 있다. 그리고 분할된 영역에서 영역을 사용자 입력으로 병합하고, 영역에서 부적절한 형태를 없애기 위해 본 연구에서는 형태론적 연산(morphological operation)을 이용하였다. 추출된 영역으로부터 유리 타일의 형태로 만들기 위하여 추출된 각각의 영역에 3차 스플라인 보간법(cubic spline interpolation)을 적용하여 경계가 완화된 영역과 납틀(leading)의 형태를 얻는다. 그 다음 영역을 스플라인 곡선(spline curve)을 이용하여 재분할하고, 각 영역에 변환(transformation)된 색상을 적용하여 최종적인 유리 타일을 만들어낸다. 본 연구에서는 3차 스플라인 보간법을 이용하여 실제 스테인드 글라스에서 생길 수 있는 부드러운 경계를 갖는 유리 타일의 형태를 만들어 이를 스테인드 글라스 렌더링에 이용하였다. 이 방법은 기존의 영역 분할 알고리즘에 형태론적 연산만을 적용하여 유리 타일의 형태를 생성하는 것보다 효과적으로 유리 타일의 형태를 생성할 수 있다. 또한, 생성된 영역에 재분할 과정을 거쳐서 작은 유리 타일이 모여서 이루는 조형적인 형태를 이룰 수 있도록 하였다.

  • PDF

Direct Fairing for Geometric Modeling of Hull Surface (선형의 기하학적 모델링을 위한 직접순정법에 관한 연구)

  • W.D. Kim;J.H. Nam;K.W. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • When a geometric modeling of a hull form for ship design and hull production is done, a hull fairing is a tedious process which wastes a lot of time, but it is unavoidable because hull consist of the sculptured surfaces. This paper presents the mathematical method of the direct fairing to overcome the tediousness of cross fairing. Bi-cubic B-spline surface description was adopted for the representation of the hull surface. The fairing process was executed by minimizing the strain energy in a shell plate. The color-encoded Gaussian curvature and strain energy were visualized on the screen to illustrate the fairness of the surface. The geometric information generated from the faired hull surface model was interfaced with the basic design calculation package and the hull production system.

  • PDF

Topographic Analysis of Bathymetry Data Acquired from the KR1 Area of Northeastern Pacific : Application of Wavelet-based Filter (북동태평양 KR1 광구 수심자료의 지형분석 : 웨이브렛 필터의 적용)

  • Jung, Mee-Sook;Kim, Hyun-Sub;Park, Cheong-Kee
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.303-310
    • /
    • 2007
  • 2-D wavelet analysis is applied to bathymetric data from the KR1 area of Korea Deepsea Mining Area. The wavelet analysis is one of the quantitative methods to analyze the topography. The wavelet allows us to create filters to select for topography in a continuous variety of shapes, sizes, and orientation. The 2-D Linear B-spline filter, 100 BS and 100 NF, is convolved with bathymetric data to identify the location of abyssal hills and abyssal troughs in bathymetry. In addition, the 2-D derivative of Cubic B-spline filter, 60 BS and 60 NF, is applied to bathymetric data to find the slope of abyssal hill in bathymetry. These filters were rotated $5^{\circ}$ counterclockwise from NS to match the dominant orientation of seafloor lineament. Both filters result in good match with abyssal hills, troughs, and slopes. This method can apply to fault, fold, and other lineament structures description with variable size. The result of application shows that wavelet analysis of bathymetric data could be used with fundamental data of geophysical analysis.

A Study on the Reclamation Earthwork Calculation Formula (매립토공량 계산식에 관한 연구)

  • 이용희;문두열
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2001
  • The calculation of earthwork plays a major role in plan or design of many civil engineering projects, and thus it has become very important to advanced the accuracy of earthwork calculation. Current method used for estimating the volume of pit excavation assumes that the ground profile between the grid points is linear(trapezoidal rule), or nonlinear(simpson's formulas). In this paper the spot height method, least square method, and chamber formulas, Chen and Lin method are compared with the volumes of the pits in these examples. As a result of this study, algorithm of chen and Lin me쇙 by spline method should provide a better accuracy than the spot height method, least square method, chamber formulas. The Chen and Lin formulas can be used for estimating the excavation volume of a pit divide into a grid with unequal intervals. From the characteristics of the cubic spline polynomial, the modeling curve of the Chen and Lin method is smooth and matches the ground profile well. Generally speaking, the nonlinear profile formulas provide better accuracy than the linear profile formulas. The mathematical model mentioned make an offer maximum accuracy in estimating the volume of a pit excavation.

  • PDF

Analysis of Impact Forces Acting on a Flat Faced Body Entering Water (평면 두부형상을 갖는 물체의 입수시 충격력 해석)

  • Chang-Gu Kang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.2
    • /
    • pp.78-85
    • /
    • 1994
  • Impact forces are acting on the fore part of a body entering water and those are function o the shape of the fore part and entrance angle. In this paper, impact forces are computed for the flat faced body with arbitrary entrance angle The geometric characteristics of the wetted surface of the body are complicated. The surface is divided into several smooth parts and each of them is represented by a bi-cubic B-spline. The free surface condition, $\phi=0$, is applied at the undisturbed free surface and he boundary value problem is analized by using Green's function.

  • PDF

Free vibration of conical shell frusta of variable thickness with fluid interaction

  • M.D. Nurul Izyan;K.K. Viswanathan;D.S. Sankar;A.K. Nor Hafizah
    • Structural Engineering and Mechanics
    • /
    • v.90 no.6
    • /
    • pp.601-610
    • /
    • 2024
  • Free vibration of layered conical shell frusta of thickness filled with fluid is investigated. The shell is made up of isotropic or specially orthotropic materials. Three types of thickness variations are considered, namely linear, exponential and sinusoidal along the radial direction of the conical shell structure. The equations of motion of the conical shell frusta are formulated using Love's first approximation theory along with the fluid interaction. Velocity potential and Bernoulli's equations have been applied for the expression of the pressure of the fluid. The fluid is assumed to be incompressible, inviscid and quiescent. The governing equations are modified by applying the separable form to the displacement functions and then it is obtained a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by cubic and quintics splines along with the boundary conditions to get generalized eigenvalue problem. The generalized eigenvalue problem is solved numerically for frequency parameters and then associated eigenvectors are calculated which are spline coefficients. The vibration of the shells with the effect of fluid is analyzed for finding the frequency parameters against the cone angle, length ratio, relative layer thickness, number of layers, stacking sequence, boundary conditions, linear, exponential and sinusoidal thickness variations and then results are presented in terms of tables and graphs.

Salt and Pepper Noise Removal using 2-Dimensional Spline Interpolation (2차원 스플라인 보간법을 이용한 Salt and Pepper 잡음 제거)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.6
    • /
    • pp.1167-1173
    • /
    • 2017
  • As the society increasingly embraces the high - tech digital information age, the field of image processing becomes progressively more branched out and becoming an imperative field. However, image data is deteriorated due to various causes during transmission and salt and pepper noise is typical. Typical methods for removing salt and pepper noise include CWMF, SWMF, and A-TMF. However, existing methods are somewhat insufficient in their ability to remove noise in salt and pepper noise environments. Therefore, in this paper, after it is determined whether noise removal is needed, the following measures were taken. If the center pixel was non-noise, the original pixel was preserved, If it was noise, we proposed a two - dimensional spline interpolation method and a median filter depending on the noise density of the local mask. For the purpose of objective judgment, we compared the results with that of existing methods and used PSNR (peak signal to noise ratio) as a judgment criterion.