• Title/Summary/Keyword: CTAB coating

Search Result 5, Processing Time 0.015 seconds

Cetyl Trimethyl Ammonium Bromide-coated Nickel Ferrite Nanoparticles for Magnetic Hyperthermia and T2 Contrast Agents in Magnetic Resonance Imaging

  • Lee, Da-Aemm;Bae, Hongsubm;Rhee, Ilsum
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1334-1339
    • /
    • 2018
  • Spherical nickel ferrite nanoparticles were synthesized using the thermal decomposition method and coated with cetyl trimethyl ammonium bromide (CTAB) after the synthesis. Transmission electron microscopy images showed that the average diameter of the particles was 9.40 nm. The status of the CTAB-coating on the surface of the particles was checked using Fourier-transform infrared spectroscopy. Their hysteresis curve showed that the particles exhibited a superparamagnetic behavior. The $T_1$ and the $T_2$ relaxations of the nuclear spins were observed in aqueous solutions of the particles with different particles concentrations by using a magnetic resonance imaging (MRI) scanner, which showed that the $T_1$ and the $T_2$ relaxivities of the particles in water were $0.57mM^{-1}{\cdot}s^{-1}$ and $10.42mM^{-1}{\cdot}s^{-1}$, respectively. In addition, using an induction heating system, we evaluated their potentials for magnetic hyperthermia applications. The aqueous solution of the particles with a moderate concentration (smaller than 6.5 mg/mL) showed a saturation temperature larger than the hyperthermia target temperature of $42^{\circ}C$. These findings show that the CTAB-coated nickel ferrite particles are suitable for applications as $T_2$ contrast agents in MRI and heat generators in magnetic hyperthermia.

Electrochemical Characteristics of Hollow Silicon/Carbon Anode Composite for Various CTAB Amounts (CTAB 조성에 따른 할로우 실리콘/탄소 음극 복합소재의 전기화학적 특성)

  • Dong Min Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.99-104
    • /
    • 2024
  • In this study, a carbon coated hollow silicon (HSi/C) composite material was prepared for anode material of high-capacity lithiun-ion battery. Hollow silica (HSiO2) was synthesized by the Stöber method with CTAB (N-Cetyltrimethylammonium bromide). The HSi/C anode composite was manufactured by carbon coating after magnesiothermic reduction of HSiO2. The physical and electrochemical characteristics of the prepared anode materials were investigated based on CTAB amount. In the FE-SEM analysis, it was found that the HSiO2 particle size increased as CTAB amount decreased, but shell thickness decreased. The HSi/C composites exhibited high initial discharge capacities of 1866.7, 2164.5 and 2188.6 mAh/g with various CTAB ratios (0.5, 1.0, 1.5), respectively. After 100 cycles of charge-discharge, 0.5-HSi/C demonstrated a high reversible capacity of 1171.3 mAh/g and a capacity retention of 70.9%. Electrochemical impedance spectroscopy (EIS) was employed to analyze the impedance characteristics, and it revealed that 0.5-HSi/C showed more stable resistance characteristics than HSi/C composites with other CTAB amount over 20 cycles.

Electrochemical Characteristics of Dopamine coated Silicon/Silicon Carbide Anode Composite for Li-Ion Battery (리튬이온배터리용 도파민이 코팅된 실리콘/실리콘 카바이드 음극복합소재의 전기화학적 특성)

  • Eun Bi Kim;Jong Dae Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, the electrochemical properties of dopamine coated silicon/silicon carbide/carbon(Si/SiC/C) composite materials were investigated to improve cycle stability and rate performance of silicon-based anode active material for lithium-ion batteries. After synthesizing CTAB/SiO2 using the Stöber method, the Si/SiC composites were prepared through the magnesium thermal reduction method with NaCl as heat absorbent. Then, carbon coated Si/SiC anode materials were synthesized through polymerization of dopamine. The physical properties of the prepared Si/SiC/C anode materials were analyzed by SEM, TEM, XRD and BET. Also the electrochemical performance were investigated by cycle stability, rate performance, cyclic voltammetry and EIS test of lithium-ion batteries in 1 M LiPF6 (EC: DEC = 1:1 vol%) electrolyte. The prepared 1-Si/SiC showed a discharge capacity of 633 mAh/g and 1-Si/SiC/C had a discharge capacity of 877 mAh/g at 0.1 C after 100 cycles. Therefore, it was confirmed that cycle stability was improved through dopamine coating. In addition, the anode materials were obtain a high capacity of 576 mAh/g at 5 C and a capacity recovery of 99.9% at 0.1 C/0.1 C.

Energy Harvesting System according to Moisture Absorption of Textile and Efficient Coating Method as a Carbon Black (섬유 고분자의 수분 흡수에 따른 에너지 하베스팅 발전 소자 및 이를 위한 카본 블랙의 효율적인 코팅법)

  • Choi, Seungjin;Chae, Juwon;Lee, Sangoh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.280-287
    • /
    • 2021
  • Generating electricity by using water in many energy harvesting system is due to their simplicity, sustainability and eco-friendliness. Evaporation-driven moist-electric generators (EMEGs) are an emergent technology and show great potential for harvesting clean energy. In this study, we report a transpiration driven electro kinetic power generator (TEPG) that utilize capillary flow of water in an asymmetrically wetted cotton fabric coated with carbon black. When water droplets encounter this textile EMEG, the water flows spontaneously under capillary action without requiring an external power supply. First carbon black sonicated and dispersed well in three different solvent system such as dimethylformamide (DMF), sodiumdedecylbenzenesulfonate (SDBS-anionic surfactant) and cetyltrimethylammoniumbromide (CTAB-cationic surfactant). A knitted cotton/PET fabric was coated with carbon black by conventional pad method. Cotton/PET fabrics were immersed and stuttered well in these three different systems and then transferred to an autoclave at 120 ℃ for 15 minutes. Cotton/PET fabric treated with carbon black dispersed in DMF solvent generated maximum current up to 5 µA on a small piece of sample (2 µL/min of water can induce constant electric output for more than 286 hours). This study is high value for designing of electric generator to harvest clean energy constantly.