• 제목/요약/키워드: CT26 colon carcinoma

검색결과 12건 처리시간 0.031초

대장암(CT 26) 생쥐에서 녹차추출물 음용에 의한 시스플라틴 항암작용 증강효과 (Potentiating Dietary Green Tea Extracts Anti-Tumor Activity of Cisplatin in BALB/c Mice Bearing CT26 Colon Carcinoma)

  • 이병래;박평심
    • 한국식품영양과학회지
    • /
    • 제41권8호
    • /
    • pp.1100-1105
    • /
    • 2012
  • 본 실험에서는 녹차추출물이 항암화학요법제의 항암작용 증강제로서의 이용가능성을 추정하기 위하여 광범위 항암화학요법제인 시스플라틴의 항암작용에 미치는 녹차추출물의 영향을 생쥐 대장암세포를 이용하여 관찰한 결과, 생쥐대장암세포인 CT26 세포를 배양하여 녹차추출물이나 EGCG을 투여하면 시스플라틴에 의한 세포독성이 증가되었는데, 시스플라틴의 세포독성에 미치는 EGCG와 녹차추출물의 효과 차이는 없었다. 생쥐에 CT26 세포를 주사하여 유발된 종양의 성장이 시스플라틴군보다 시스플라틴+녹차추출물 병합 투여로 현저히 감소되었다. 이상의 결과 녹차추출물은 화학요법제인 시스플라틴과 병합 투여할 경우 화학요법제 단독 투여 시보다 대장암 세포의 활성도 감소가 더 크고, 생쥐대장암의 크기를 감소시키는 작용도 더 크기 때문에 녹차추출물을 화학요법제와 병행투여하면 항암치료 효과가 증가될 것으로 생각된다. 따라서 녹차추출물은 항암화학요법제에 의한 암치료에서 치료효과를 증강시킬 수 있는 보조제로서 이용될 수 있을 것으로 기대되며, 이러한 효과를 입증하기 위한 더 많은 연구가 있어야 할 것으로 사료된다.

Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice

  • Thi, Van Anh Do;Jeon, Hyung Min;Park, Sang Min;Lee, Hayyoung;Kim, Young Sang
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.869-883
    • /
    • 2019
  • Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL-15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancer-cell vaccine using mitomycin C (MMC)-treated IL-15:IL-15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) long-term protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.

Cytotoxic Activities of Green and Brown Seaweeds Collected from Jeju Island against Four Tumor Cell Lines

  • Kim, Kil-Nam;Lee, Ki-Wan;Song, Choon-Bok;Jeon, You-Jin
    • Preventive Nutrition and Food Science
    • /
    • 제11권1호
    • /
    • pp.17-24
    • /
    • 2006
  • Methanolic and aqueous extracts from 37 seaweed species (10 green and 27 brown seaweeds) collected from Jeju Island coast were prepared at high ($70^{\circ}C$) and room ($20^{\circ}C$) temperatures and examined for cytotoxic activity against 4 tumor cell lines: U937 (human monoblastoid leukemia cell line), HL60 (human promyelocytic leukemia cell line), HeLa (woman cervical carcinoma cell line) and CT26 (mouse colon carcinoma line). Both MeOH extracts of Desmarestia tabacoides and Dictyota dichotoma possessed strong cytotoxic activities against all the tumor cell lines tested, but the aqueous extract exhibited no activity. On the other hand Ecklonia cava showed strong cytotoxic activities for the $20^{\circ}C$ aqueous extract against the three tumor cells except HeLa cell. Sagassum coreanum and Sagassum siliquastrum $20^{\circ}C$ aqueous extracts also exhibited strong cytotoxic activities against U937, HL60, HeLa cells. Even though green seaweeds showed less activity than brown seaweeds, $20^{\circ}C$ aqueous extracts of Codium contractum and Codium fragile exhibited strong cytotoxic activities against HL60 or CT26 cells, respectively.

활성추적분리법에 의해서 순수분리한 마늘 N-benzyl-N-methyldecan-1-amine이 CT-26 세포주 이식 BALB/C mice의 항암효과 (Activity-guided Purification of N-benzyl-N-methyldecan-1-amine from Garlic and Its Antitumor Activity against CT-26 Colorectal Carcinoma in BALB/C Mice)

  • 라자세카 시타르만;최성미;궈루;추이정웨이;두리마 오타곤바야르;박주하;권영석;곽정호;권영희;민지현;강점순;최영환
    • 생명과학회지
    • /
    • 제29권10호
    • /
    • pp.1062-1070
    • /
    • 2019
  • 마늘(Allium sativum)의 주요 생리활성 성분들은 다양한 종류의 암에 대해 항암효과가 보고되고 있다. 본 연구에서는 활성추적분리방법(activity-guided purification)을 이용하여 마늘의 항암성분을 발굴하고자 하였다. 마늘 에탄올 추출물을 칼럼크로마토그래피로 얻은 각각의 분획물에 대해서 AGS세포의 증식 억제율을 검증하여 가장 효과가 좋은 분획물로부터 물질을 순수분리하여 구조를 동정한 결과 N-benzyl-N-methyldecan-1-amine (NBNMA)로 밝혀졌다. NBNMA의 암생장 억제효능을 검증하기 위해서 CT-26, AGS, HepG2, HCT-116, MCF7, B16F10 및 Sarcoma-180 세포에 대한 in vitro 효과와 CT-26 결장암 세포를 마우스에 이식한 다음 in vivo 효과를 조사하였다. NBNMA는 Bcl-2의 down-regulation과 Bad의 up-regulation을 유도하여 CT-26 세포의 세포사멸 촉진시켰다. 또한, NBNMA는 세포사멸의 외적 및 내적 경로에서 caspases 억제자인 caspase 3과 caspase 9의 활성을 약간 증가시켰다. CT-26세포를 이식한 쥐에 $19.13{\mu}M/kg$의 NBNMA를 21일 동안 경구투여한 결과 암종의 크기가 43% 감소하였다. NBNMA는 in vitro 및 in vivo에서 항암 효과를 나타내었는데, 이러한 결과는 마늘로부터 순수분리한 NBNMA가 대장암치료를 위한 항암제 후보물질로서 활용 가능성이 있을 것으로 기대된다.

Red Sea Cucumber (Stichopus japonicus) Suppresses Cancer Progression by Promoting the ROS-Me diated Inhibition of the MAPK Pathway

  • Kim, Jusnseong;Kim, Eun-A;Kang, Nalae;Choi, Youn Kyung;Heo, Soo-Jin
    • 한국해양바이오학회지
    • /
    • 제12권2호
    • /
    • pp.91-98
    • /
    • 2020
  • Stichopus japonicas (red sea cucumbers) inhabit the coastal sea surrounding Jeju Island, South Korea, and are thought to have various medicinal properties. In this study, we investigated the anticancer activity of a red sea cucumber (S. japonicus) collected from Jeju Island. We obtained the red sea cucumber extract (RSCE), and observed that it inhibited the tumor cell growth and increased reactive oxygen species (ROS) production associated with the induction of apoptosis through the mitogen-activated protein kinase (MAPK) pathway in murine colon carcinoma cells (CT-26). Treatment with RSCE and N-acetylcysteine, which is a ROS scavenger, increased ROS production and apoptosis via the regulation by the MAPK pathway on the ERK and JNK compared with the nontreated group. Therefore, RSCE promotes ROS-mediated suppression of the ERK and JNK activation, and subsequently inhibits cancer progression, suggesting that RSCE may be beneficial in treating colon carcinoma.

Cell-Specific Targeting of Texas Red with Anti-Ep-CAM Antibody

  • Lee, Soo-Chul;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.123-127
    • /
    • 2005
  • The polyclonal antibody was generated against the peptide fragment of 62 amino acid residues (D 181-T242) near the COOH-terminal region of the extracellular domain of epithelial-cell adhesion molecule (Ep-CAM) and shown to be able to recognize Ep-CAM in competitive ELISA. Then, sulforhodamine 101 acid chloride (so called Texas red), a fluorescence dye, was conjugated to the affinity-purified anti-Ep-CAM antibody utilizing the reaction between the aliphatic amines of antibody and the sulfonyl chloride of Texas red. The molar ratio of Texas red to antibody was estimated to be approximately 1.86 by measuring optical densities at 280 nm and 596 nm, implying that the two molecules of Texas red at most were conjugated to antibody. The anti-Ep-CAM antibody-Texas red conjugate was then used for immunohistochemistry of CT-26 murine colon carcinoma cells. Based upon the fluorescence microscope images, anti-Ep-CAM antibody is able to deliver Texas red specifically to the surface of CT-26 cells on which Ep-CAM was actively expressed. This result indicates that anti-Ep-CAM antibody could be useful for the tissue-specific delivery of photosensitizers via antigen-antibody interaction.

  • PDF

Anti-tumor Effects of Penfluridol through Dysregulation of Cholesterol Homeostasis

  • Wu, Lu;Liu, Yan-Yang;Li, Zhi-Xi;Zhao, Qian;Wang, Xia;Yu, Yang;Wang, Yu-Yi;Wang, Yi-Qin;Luo, Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.489-494
    • /
    • 2014
  • Background: Psychiatric patients appear to be at lower risk of cancer. Some antipsychotic drugs might have inhibitory effects on tumor growth, including penfluridol, a strong agent. To test this, we conducted a study to determine whether penfluridol exerts cytotoxic effects on tumor cells and, if so, to explore its anti-tumor mechanisms. Methods: Growth inhibition of mouse cancer cell lines by penfluridol was determined using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Cytotoxic activity was determined by clonogenic cell survival and trypan blue assays. Animal tumor models of these cancer cells were established and to evaluate penfluridol for its anti-tumor efficacy in vivo. Unesterified cholesterol in cancer cells was examined by filipin staining. Serum total cholesterol and tumor total cholesterol were detected using the cholesterol oxidase/p-aminophenazone (CHOD-PAP) method. Results: Penfluridol inhibited the proliferation of B16 melanoma (B16/F10), LL/2 lung carcinoma (LL/2), CT26 colon carcinoma (CT26) and 4T1 breast cancer (4T1) cells in vitro. In vivo penfluridol was particularly effective at inhibiting LL/2 lung tumor growth, and obviously prolonged the survival time of mice bearing LL/2 lung tumors implanted subcutaneously. Accumulated unesterified cholesterol was found in all of the cancer cells treated with penfluridol, and this effect was most evident in LL/2, 4T1 and CT26 cells. No significant difference in serum cholesterol levels was found between the normal saline-treated mice and the penfluridol-treated mice. However, a dose-dependent decrease of total cholesterol in tumor tissues was observed in penfluridol-treated mice, which was most evident in B16/F10-, LL/2-, and 4T1-tumor-bearing mice. Conclusion: Our results suggested that penfluridol is not only cytotoxic to cancer cells in vitro but can also inhibit tumor growth in vivo. Dysregulation of cholesterol homeostasis by penfluridol may be involved in its anti-tumor mechanisms.

All-trans Retinoic Acid-Associated Low Molecular Weight Water-Soluble Chitosan N anoparticles Based on Ion Complex

  • Kim Dong-Gon;Choi Changyong;Jeong Young-Il;Jang Mi-Kyeong;Nah Jae-Woon;Kang Seong-Koo;Bang Moon-Soo
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.66-72
    • /
    • 2006
  • The purpose of this study is to develop novel nanoparticles based on polyion complex formation between low molecular weight water-soluble chitosan (LMWSC) and all-trans retinoic acid (atRA). LMWSC nanoparticles encapsulating atRA based on polyion complex were prepared by mixing of atRA into LMWSC aqueous solution using ultrasonication. In FTIR spectra, the carbonyl group of atRA at 1690 $cm^{-1}$ disappeared or decreased when ion complexes were formed between LMWSC and atRA. In ${1}^H$ NMR spectra, specific peaks of atRA disappeared when atRA-encapsulated LMWSC (RAC) nanoparticles were reconstituted into $D_{2}O$ while specific peaks both of atRA and LMWSC appeared in $D_{2}O$/DMSO (1/3, v/v) mixture. XRD patterns also showed that the crystal peaks of atRA were disappeared by encapsulation into LMWSC nanoparticles. LMWSC nanoparticles encapsulating atRA have spherical shapes with particle size below 200 nm. The mechanism of encapsulation of atRA into LMWSC nanoparticles was thought to be an ion complex formation between LMWSC and atRA. LMWSC nanoparticles showed high atRA loading efficiency over 90$\%$ (w/w). AtRA was continuously released from nanoparticles over 10 days. In in vitro cell cytotoxicity test, free atRA showed higher cytotoxic effect against CT 26 colon carcinoma cell line on 1 day. However, RAC nanoparticles showed similar cytotoxicity against CT 26 cells on 2 day. These results suggest the potential for the introduction of LMWSC nanoparticles into various biomedical fields such as drug delivery.