• Title/Summary/Keyword: CT-TDLAS

Search Result 5, Processing Time 0.018 seconds

Calculating of 3-Dimensional Temperature Distribution for High-Temperature Exhaust Gas Using CT-TDLAS (CT-TDLAS를 이용한 고온 배기가스의 3차원 온도분포 측정)

  • YOON, DONGIK;KIM, JOONHO;JEON, MINGYU;CHOI, DOOWON;CHO, GYEONGRAE;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.1
    • /
    • pp.97-104
    • /
    • 2018
  • 3-dimensional temperature distribution of the exhaust gas of a fire flame of LPG have been measured by the constructed CT-TDLAS system. 3-Dimensional temperature distributions are measured by 2 layers of CT-TDLAS. Each layer has $8{\times}8$ laser beams implying the temperatures of 64 meshes are measured. SMART algorithm has been adopted for reconstructing the absorption coefficients on the meshes. The line strengths at 6 representative wave lengths of $H_2O$ have been used for obtaining the absorption spectra of the exhaust gas. The temperature distributions measured by the constructed CT-TDLAS have been compared with those by the thermocouples. The relative errors measured between by thermocouple and CT-TDLAS were 13% in average and 33% at maximum. The similarity of temperature distribution between by thermocouples and by CT-TDLAS has been shown at the lower layer than the upper layer implying an unstability of combustions.

Study on Optimal Coefficients of Line Broadening Function for Performance Enhancements of CT-TDLAS (CT-레이저흡수분광법(TDLAS) 성능향상을 위한 레이저 선폭확장 함수 최적 계수 선정에 관한 연구)

  • CHOI, DOOWON;CHO, GYONGRAE;DEGUCHI, YOSHIHIRO;BAEK, TAESIL;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.773-782
    • /
    • 2016
  • The performance of the CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is strongly dependent upon the line broadening functions. The line of the laser beam used in the TDLAS is scattered by the natural broadening, the collisional broadening and the doppler broadening. The influence of the natural broadening to the experimental spectra obtained in the TDLAS is negligible. The influences of the collisional broadening and the doppler broadening to the experimental spectra are relatively large, in high pressure gas flows and in high temperature low pressure gas flows, respectively. In this study, optimal coefficients are proposed for the doppler broadening function by using the experimental data obtained in a flat burner test. The optimal coefficients were ${\gamma}_j=0.16$ and n=0.37. Using these coefficients, the temperature and concentration distributions at the engine exhaust gas pipe have been calculated showing their validities.

2D Temperature Measurement of CT-TDLAS by Using Two-Ratios-of-Three-Peaks Algorithm (컴퓨터토모그래피 레이저흡수분광법(CT-TDLAS) 기반 2차원 온도분포 산정 Two-Ratios-of-Three-Peaks (2R3P) 알고리듬 개발)

  • CHOI, DOOWON;CHO, GYONGRAE;SHIM, JOONHWAN;DEGUCHI, YOSHIHIRO;KIM, DONGHYUK;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.3
    • /
    • pp.318-327
    • /
    • 2016
  • In order to improve the performance of temperature field measurements by CT-TDLAS (Computer Tomography Tunable Diode Laser Absorption Spectroscopy), a new reconstruction algorithm, named two-ratios-of-three-peaks method is proposed in this paper. Further, two methods for selecting appropriate initial values of the iterative calculation of CT-TDLAS are proposed. One is MLOS (multiplicative line of sight) method and the other one is ALOS (additive line of sight) method. Two-ratios-of-three-peaks (2R3P) algorithm combined with MART (multiplicative algebraic reconstruction technique) is finally developed for the enhancements of reconstructive calculations. The results have been compared with those obtained by the conventional one-ratio-of-two-peaks (1R2P) algorithm. In order to evaluate the performance of this algorithm, numerical test has been performed using phantom Gaussian temperature distributions with $11{\times}11$ square mesh. The performance of the constructed algorithm has been demonstrated by comparing the results obtained in actual burner experiments with those obtained by thermocouples. It has been verified that 2R3P algorithm with MART and MLOS showed best performance than that of 1R2P algorithm.

Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS (레이저흡수분광법(TDLAS) 기반 가스온도분포 산정을 위한 상호상관계산 알고리듬 개발)

  • CHOI, DOOWON;KIM, KWANGNAM;CHO, GYONGRAE;SHIM, JOONHWAN;KIM, DONGHYUK;DEGUCHI, YOSHIHIRO;DOH, DEOGHEE
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.1
    • /
    • pp.127-134
    • /
    • 2016
  • Most of reconstruction algorithms for the calculation of temperature distributions in CT (computed tomography)-TDLAS (tunable diode laser absorption spectroscopy) are based upon two-line thermometry method. This method gives unstable calculation convergence due to signal noise, bias error, and signal mis-matches. In this study, a new reconstruction algorithm based on cross-correlation for temperature calculation is proposed. The patterns of the optical signals at all wave lengths were used to reconstruct the temperature distribution. Numerical test has been made using phantom temperature distributions. Using these phantom temperature data, absorption spectra for all wave lengths were constructed, and these spectra were regarded as the signals that would be obtained in an actual experiments. Using these virtually generated experimental signals, temperature distribution was once again reconstructed, and was compared with those of the original phantom data. Calculation errors obtained by the newly proposed algorithm were slightly large at high temperatures with small errors at low temperature.

A Study on the Real-Time Temperature and Concentration Measurement of Combustion Pipe Flow Field (연소 배관 유동장의 실시간 온도, 농도 측정에 관한 연구)

  • Hong, Jeong Woong;Yoon, Sung Hwan;Jeon, Min Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Pipe failure due to thermal fatigue and environmental regulations are increasing the importance of pipe monitoring systems in industrial plants. Since most pipe monitoring systems are focus on external crack inspected, it is necessary to temperature and concentration measuring monitoring system inside the pipe. These systems have spatial uncertainty due to sample inspection by one-point measurement. In addition, real-time measurement is not possible due to the limitation of time delay due to contact measurement. In this study, CT-TDLAS (Computed tomography-Tunable diode laser absorption spectroscopy) apply to overcome the limitations of existing methods. Lasers exhibiting an absorption response at a wavelength of 1395 nm were arranged in a lattice pattern on measuring cell. It showed that the inside of the pipe changed to an unstable combustion state over time.