DOI QR코드

DOI QR Code

Study on Optimal Coefficients of Line Broadening Function for Performance Enhancements of CT-TDLAS

CT-레이저흡수분광법(TDLAS) 성능향상을 위한 레이저 선폭확장 함수 최적 계수 선정에 관한 연구

  • CHOI, DOOWON (Division of Mechanical Eng., Korea Maritime & Ocean Univ.) ;
  • CHO, GYONGRAE (Graduate School of Advanced Tech., & Science, Tokushima Univ.) ;
  • DEGUCHI, YOSHIHIRO (Graduate School of Advanced Tech., & Science, Tokushima Univ.) ;
  • BAEK, TAESIL (Dept. of Steel Industry, Pohang Univ.) ;
  • DOH, DEOGHEE (Division of Mechanical Eng., Korea Maritime & Ocean Univ.)
  • 최두원 (한국해양대학교 공과대학 기계공학부) ;
  • 조경래 ;
  • ;
  • 백태실 (포항대학교 제철산업과) ;
  • 도덕희 (한국해양대학교 공과대학 기계공학부)
  • Received : 2016.12.01
  • Accepted : 2016.12.30
  • Published : 2016.12.30

Abstract

The performance of the CT-TDLAS (computed tomography-tunable diode laser absorption spectroscopy) is strongly dependent upon the line broadening functions. The line of the laser beam used in the TDLAS is scattered by the natural broadening, the collisional broadening and the doppler broadening. The influence of the natural broadening to the experimental spectra obtained in the TDLAS is negligible. The influences of the collisional broadening and the doppler broadening to the experimental spectra are relatively large, in high pressure gas flows and in high temperature low pressure gas flows, respectively. In this study, optimal coefficients are proposed for the doppler broadening function by using the experimental data obtained in a flat burner test. The optimal coefficients were ${\gamma}_j=0.16$ and n=0.37. Using these coefficients, the temperature and concentration distributions at the engine exhaust gas pipe have been calculated showing their validities.

Keywords

References

  1. D. W. Choi, G. R. Cho, J. H. Shim, Y. Deguchi, D. H. Kim, D. H. Doh, 2D Temperature Measurement of CT-TDLAS by using Two-Ratios-of-Three-Peaks Algorithm, Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 3, 2016, pp. 318-327. https://doi.org/10.7316/KHNES.2016.27.3.318
  2. T. Kamimoto, Y. Deguchi, D. W. Choi, J. H. Shim, "Validation of the Real-Time 2D Temperature Measurement Method using the CT Tunable Diode Laser Absorption Spectroscopy", Heat Transfer Research, Vol. 47, 2016, pp. 193-202. https://doi.org/10.1615/HeatTransRes.2015010748
  3. L. Ma and W. Cai, "Numerical Investigation of Hyperspectral Tomography for Simultaneous Temperature and Concentration Imaging", Applied Optics, Vol. 47, No. 21, 2008, pp.3751-3759. https://doi.org/10.1364/AO.47.003751
  4. M. Yamakage, K. Muta, Y. Deguchi, S. Fukada, T. Iwase and T. Yoshida, "Development of Direct and Fast Response Exhaust Gas Measurement", SAE Paper No. 20081298, 2009.
  5. D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi and D. H. Doh, "Performance Improvement in Temperature Reconstructions of 2-D Tunable Diode Laser Absorption Spectroscopy (TDLAS)", Journal of Thermal Science, Vol. 25, No. 1, 2016, pp. 84-89. https://doi.org/10.1007/s11630-016-0837-z
  6. D. W. Choi, M. G. Jeon, G. R. Cho, T. Kamimoto, Y. Deguchi and D. H. Doh, "Developments of a Cross-Correlation Calculation Algorithm for Gas Temperature Distributions Based on TDLAS", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 1, 2016, pp. 127-134. https://doi.org/10.7316/KHNES.2016.27.1.127
  7. R. R. Gamache, S. Kennedy, R. Hawkins and L. S. Rothman, "Total Internal Partition Sums for Molecules in the Terrestrial Atmosphere", Journal of Molecular Structure 517-518, 2000, pp. 407-425. https://doi.org/10.1016/S0022-2860(99)00266-5
  8. G. Durry, V. Zeninari, B. Parvitte, T. Le barbu, F. Lefevre, J. Ovarlez, R. R. Gamache, "Pressurebroadening coefficients and line strengths of H2O near 1.39 mm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers", Journal of Quantitative Spectroscopy & Radiative Transfer, 94(3-4), 2004, pp. 387-403. https://doi.org/10.1016/j.jqsrt.2004.09.033
  9. R. R. Gamache, S. Kennedy, R. Hawkins, L. S. Rothman, Jounal of Molecular Structure 517-518 2000, pp. 407-425. https://doi.org/10.1016/S0022-2860(99)00266-5
  10. L. S. Rothman, I. E. Gordon, A. Barbe, D. Chris Benner, P. F. Bernath, M. Birk, V. Boudon, L. R. Brown, A. Campargue, J. P. Champion, K. Chance, L. H. Coudert, V. Dana, V. M. Devi, S. Fally, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner, N. Lacome, W. J. Lafferty, J. Y. Mandin, S. T. Massie, S. N. Mikhailenko, C. E. Miller, N. Moazzen-Ahmadi, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. I. Perevalov, A. Perrin, A. Predoi-Cross, C. P. Rinsland, M. Rotger, M. Simeckova, M. A. H. Smith, K. Sung, S. A. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, and J. Vander Auwera, "The HITRAN 2008 Molecular Spectroscopic Database", Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 110, 2009, pp. 533-5729. https://doi.org/10.1016/j.jqsrt.2009.02.013
  11. D. H. Doh, C. J. Lee, G. R. Cho and K. R. Moon, "Performances of Volume-PTV and Tomo-PIV", Open Journal of Fluid Dynamics, Vol. 2 No.4A, 2012, pp. 368-374. https://doi.org/10.4236/ojfd.2012.24A047
  12. D. W. Choi, "Study on performance enhancements of temperature and concentration fields measurements based on CT-TDLAS", Ph.D. dissertation, Korea Maritime & Ocean Univ.
  13. Y. Zaatar, J. Bechara, A. Khoury, D Zaouk, J.P. Charles, Diode laser sensor for process control and environmental monitoring, Applied Energy, 65, pp. 107-113, 2000. https://doi.org/10.1016/S0306-2619(99)00090-2