• 제목/요약/키워드: CT-Image

검색결과 1,677건 처리시간 0.026초

Deep Learning-Based Computed Tomography Image Standardization to Improve Generalizability of Deep Learning-Based Hepatic Segmentation

  • Seul Bi Lee;Youngtaek Hong;Yeon Jin Cho;Dawun Jeong;Jina Lee;Soon Ho Yoon;Seunghyun Lee;Young Hun Choi;Jung-Eun Cheon
    • Korean Journal of Radiology
    • /
    • 제24권4호
    • /
    • pp.294-304
    • /
    • 2023
  • Objective: We aimed to investigate whether image standardization using deep learning-based computed tomography (CT) image conversion would improve the performance of deep learning-based automated hepatic segmentation across various reconstruction methods. Materials and Methods: We collected contrast-enhanced dual-energy CT of the abdomen that was obtained using various reconstruction methods, including filtered back projection, iterative reconstruction, optimum contrast, and monoenergetic images with 40, 60, and 80 keV. A deep learning based image conversion algorithm was developed to standardize the CT images using 142 CT examinations (128 for training and 14 for tuning). A separate set of 43 CT examinations from 42 patients (mean age, 10.1 years) was used as the test data. A commercial software program (MEDIP PRO v2.0.0.0, MEDICALIP Co. Ltd.) based on 2D U-NET was used to create liver segmentation masks with liver volume. The original 80 keV images were used as the ground truth. We used the paired t-test to compare the segmentation performance in the Dice similarity coefficient (DSC) and difference ratio of the liver volume relative to the ground truth volume before and after image standardization. The concordance correlation coefficient (CCC) was used to assess the agreement between the segmented liver volume and ground-truth volume. Results: The original CT images showed variable and poor segmentation performances. The standardized images achieved significantly higher DSCs for liver segmentation than the original images (DSC [original, 5.40%-91.27%] vs. [standardized, 93.16%-96.74%], all P < 0.001). The difference ratio of liver volume also decreased significantly after image conversion (original, 9.84%-91.37% vs. standardized, 1.99%-4.41%). In all protocols, CCCs improved after image conversion (original, -0.006-0.964 vs. standardized, 0.990-0.998). Conclusion: Deep learning-based CT image standardization can improve the performance of automated hepatic segmentation using CT images reconstructed using various methods. Deep learning-based CT image conversion may have the potential to improve the generalizability of the segmentation network.

SiPM PET/CT에서 3D 프린팅 기반 자체제작한 팬텀을 이용한 iMAR 알고리즘 유용성 평가에 관한 연구 (The feasibility of algorithm for iterative metal artifact reduction (iMAR) using customized 3D printing phantom based on the SiPM PET/CT scanner)

  • 이민규;박찬록
    • 핵의학기술
    • /
    • 제28권1호
    • /
    • pp.35-40
    • /
    • 2024
  • Purpose: To improve the image quality in positron emission tomography (PET), the attenuation correction technique based on the computed tomography (CT) data is important process. However, the artifact is caused by metal material during PET/CT scan, and the image quality is degraded. Therefore, the purpose of this study was to evaluate image quality according to with and without iterative metal artifact reduction (iMAR) algorithm using customized 3D printing phantom. Materials and Methods: The Hoffman and Derenzo phantoms were designed. To protect the gamma ray transmission and express the metal portion, lead substance was located to the surface. The SiPM based PET/CT was used for acquisition of PET images according to application with and without iMAR algorithm. The quantitative methods were used by signal to noise ratio (SNR), coefficient of variation (COV), and contrast to noise ratio (CNR). Results and Discussion: The results shows that the image quality applying iMAR algorithm was higher 1.15, 1.19, and 1.11 times than image quality without iMAR algorithm for SNR, COV, and CNR. Conclusion: In conclusion, the iMAR algorithm was useful for improvement of image quality by reducing the metal artifact lesion.

Metal Area Segmentation in X-ray CT Images Using the RNA (Relevant Neighbor Ar ea) Principle

  • Kim, Youngshin;Kwon, Hyukjoon;Kim, Joongkyu;Yi, Juneho
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1442-1448
    • /
    • 2012
  • The problem of Metal Area Segmentation (MAS) in X-ray CT images is a very hard task because of metal artifacts. This research features a practical yet effective method for MAS in X-ray CT images that exploits both projection image and reconstructed image spaces. We employ the Relevant Neighbor Area (RNA) idea [1] originally developed for projection image inpainting in order to create a novel feature in the projection image space that distinctively represents metal and near-metal pixels with opposite signs. In the reconstructed result of the feature image, application of a simple thresholding technique provides accurate segmentation of metal areas due to nice separation of near-metal areas from metal areas in its histogram.

Generation of contrast enhanced computed tomography image using deep learning network

  • Woo, Sang-Keun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권3호
    • /
    • pp.41-47
    • /
    • 2019
  • In this paper, we propose a application of conditional generative adversarial network (cGAN) for generation of contrast enhanced computed tomography (CT) image. Two types of CT data which were the enhanced and non-enhanced were used and applied by the histogram equalization for adjusting image intensities. In order to validate the generation of contrast enhanced CT data, the structural similarity index measurement (SSIM) was performed. Prepared generated contrast CT data were analyzed the statistical analysis using paired sample t-test. In order to apply the optimized algorithm for the lymph node cancer, they were calculated by short to long axis ratio (S/L) method. In the case of the model trained with CT data and their histogram equalized SSIM were $0.905{\pm}0.048$ and $0.908{\pm}0.047$. The tumor S/L of generated contrast enhanced CT data were validated similar to the ground truth when they were compared to scanned contrast enhanced CT data. It is expected that advantages of Generated contrast enhanced CT data based on deep learning are a cost-effective and less radiation exposure as well as further anatomical information with non-enhanced CT data.

방사선치료를 위한 영상장비의 선량 및 영상 평가 (Dose and Image Evaluations of Imaging for Radiotherapy)

  • 이형건;윤창연;김태준;김동욱;정원규;박성호;이원호
    • 한국의학물리학회지:의학물리
    • /
    • 제23권4호
    • /
    • pp.292-302
    • /
    • 2012
  • 최근 방사선치료 분야에 있어서 환자 선량이 중요한 쟁점이 되고 있다. 선량 감소를 위해 선진 기술을 이용한 방사선치료 시 사용하는 진단영상 장비에 대한 평가가 이루어져야 한다. 특히 CT는 방사선치료 분야에서 널리 사용되는 영상 장비이며, 본 연구에서는 CT의 선량과 영상에 대한 평가를 실시하였다. 선량과 영상을 동시에 비교할 수 있도록 동일한 조건 하에서 평가를 실시하였다. 또한 몬테카를로 시뮬레이션 툴인 MCNPX를 이용한 선량과 영상 평가가 가능하다는 것을 확인하였다. 저 선량 CT 영상의 질을 향상시키기 위하여 MLEM기법을 이용한 반복적 영상재구성 기법을 구축하였다. 본 연구의 평가 방법을 통해 방사선 치료 분야에서의 환자 선량을 줄이는 것뿐만 아니라 산업 연구 분야에서의 영상장비들의 총체적인 평가가 가능할 것이다.

PET-CT Normalization, Well Counter Correction에 따른 팬텀을 이용한 영상 평가 (Evaluation of Image for Phantom according to Normalization, Well Counter Correction in PET-CT)

  • 이충운;유연욱;문종운;김윤철
    • 핵의학기술
    • /
    • 제27권1호
    • /
    • pp.47-54
    • /
    • 2023
  • Purpose PET-CT imaging require an appropriate quality assurance system to achieve high efficiency and reliability. Quality control is essential for improving the quality of care and patient safety. Currently, there are performance evaluation methods of UN2-1994 and UN2-2001 proposed by NEMA and IEC for PET-CT image evaluation. In this study, we compare phantom images with the same experiments before and after PET-CT 3D normalization and well counter correction and evaluate the usefulness of quality control. Materials and methods Discovery 690 (General Electric Healthcare, USA) PET-CT equiptment was used to perform 3D normalization and well counter correction as recommended by GE Healthcare. Based on the recovery coefficients for the six spheres of the NEMA IEC Body Phantom recommended by the EARL. 20kBq/㎖ of 18F was injected into the sphere of the phantom and 2kBq/㎖ of 18F was injected into the body of phantom. PET-CT scan was performed with a radioacitivity ratio of 10:1. Images were reconstructed by appliying TOF+PSF+TOF, OSEM+PSF, OSEM and Gaussian filter 4.0, 4.5, 5.0, 5.5, 6.0, 6,5 mm with matrix size 128×128, slice thickness 3.75 mm, iteration 2, subset 16 conditions. The PET image was attenuation corrected using the CT images and analyzed using software program AW 4.7 (General Electric Healthcare, USA). The ROI was set to fit 6 spheres in the CT image, RC (Recovery Coefficient) was measured after fusion of PET and CT. Statistical analysis was performed wilcoxon signed rank test using R. Results Overall, after the quality control items were performed, the recovery coefficient of the phantom image increased and measured. Recovery coefficient according to the image reconstruction increased in the order TOF+PSF, TOF, OSEM+PSF, before and after quality control, RCmax increased by OSEM 0.13, OSEM+PSF 0.16, TOF 0.16, TOF+PSF 0.15 and RCmean increased by OSEM 0.09, OSEM+PSF 0.09, TOF 0.106, TOF+PSF 0.10. Both groups showed a statistically significant difference in Wilcoxon signed rank test results (P value<0.001). Conclusion PET-CT system require quality assurance to achieve high efficiency and reliability. Standardized intervals and procedures should be followed for quality control. We hope that this study will be a good opportunity to think about the importance of quality control in PET-CT

  • PDF

Convolution Kernel의 종류에 따른 CT 감약계수 및 노이즈 측정에 관한 연구 (A Method to Obtain the CT Attenuation Coefficient and Image Noise of Various Convolution Kernels in the Computed Tomography)

  • 권대철;유병규;이종석;장근조
    • 대한디지털의료영상학회논문지
    • /
    • 제9권1호
    • /
    • pp.21-30
    • /
    • 2007
  • 영상 획득과 재구성 방법에 따라 CT 감약계수는 다양성을 보이고 관심 영역의 노이즈는 정밀도에 영향을 준다. 인체에서 간 실질조직과 위장의 물의 CT 감약계수와 노이즈를 커널에 따라 측정하였다. 다중채널 CT 스캐너를 이용하여 복부를 스캔 하였고, 커널은 B10 (very smooth), B20 (smooth), B30 (medium smooth), B40 (medium), B50 (medium sharp), B60 (sharp), B70 (very sharp), B80 (ultra sharp)으로 재구성하여 간의 실질 조직과 물이 들어 있는 위장 부위를 ROI 기능을 이용하여 평균의 CT감약계수와 표준편차인 노이즈를 측정하여 영상을 비교하였다. 간의 실질 조직에서 CT감약계수는 커널에 따라 60.4에서 69.2 HU사이에서 분포하여 차이가 없었으나, 노이즈는 커널(7.6$\sim$63.8 HU)이 높아질수록 증가하였다. 물의 CT감약계수는 -2.2 HU에서 0.8 HU사이에서 측정되었고, 노이즈는 커널(10.1$\sim$82.4 HU)이 높아질수록 증가하였다. 영상의 질을 높이기 위해서는 검사 부위에 따라 노이즈를 감소하기 위해 적절한 커널을 선택하여 CT 검사를 하여야 한다.

  • PDF

비등방성 2차원 확산 기반 필터를 이용한 전산화단층영상 품질 개선 (Image Quality Improvement in Computed Tomography by Using Anisotropic 2-Dimensional Diffusion Based Filter)

  • 성열훈
    • 한국방사선학회논문지
    • /
    • 제10권1호
    • /
    • pp.45-51
    • /
    • 2016
  • 본 연구에서는 비등방성 2차원 확산 기반 필터를 이용하여 전산화단층영상(computed tomography, CT)의 노이즈 제거와 공간분해능을 향상하고자 하였다. 실험은 4-채널 다중검출기 전산화단층영상기기(4-channel multi-detector computed tomography, MDCT)를 이용하였으며, CT 영상품질 평가를 위해 미국 의학물리학자협의회(american association of physicists in medicine, AAPM) CT 성능 평가용 팬톰을 사용하였다. X-선 조사 조건은 120 kVp, 100 mAs로 고정한 후 ultra-high resolution으로 10 mm 축 방향 스캔 하였다. 본 연구에서 제안한 비등방성 2차원 확산 기반 필터는 원 영상에 각 픽셀에 가중치 1.2를 곱하고 0.4% 히스토그램 스트레칭을 통해 영상의 대조도를 증가시킨 후 비등방성 2차원 확산 필터를 적용하였다. 그 결과, 공간분해능은 원 영상에서 0.75 mm까지 구분되었지만 제안한 비등방성 2차원 확산 기반 필터 영상에서는 0.40 mm까지 구분되었다. 원 영상의 노이즈는 46.0, 제안한 비등방성 2차원 확산 기반 필터 영상의 노이즈는 33.5로 27.2%가 감소하였다. 우리가 제안한 비등방성 2차원 확산 기반 필터는 CT의 노이즈 제거와 공간분해능을 향상시킬 수 있었다.

모바일 환경에서 의료 진단 정보 시스템의 구현 및 의료 영상의 적합성 평가 (Implementation of Medical Diagnostic Information System and Conformance Test of Medical Image in Mobile Environment)

  • 조정호;김광현
    • 한국전자통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.713-720
    • /
    • 2015
  • 모바일 환경이 널리 확산되면서 최근 의료진단시스템은 기존 시스템의 지역적 한계를 넘어 시공간의 제약을 받지 않고 제공되고 있다. 또한 무선 인터넷 기술과 모바일 이동 통신 기술이 의료 기술과 융합하며 빠르게 보급되어 발전하고 있다. 의료 서비스 이용자는 다양한 종류의 무선 단말기를 이용하여 이동 중 무선망을 통해 의료 서비스를 제공 받을 수 있다. 본 논문에서는 병원 의료영상 진단 정보를 병원내의 시공간을 벗어나 전송, 검색 및 갱신할 수 있는 의료 진단 정보 시스템을 구현하고 평가하였다. DICOM CT영상과 JPEG 2000 CT압축영상의 비교를 통하여 임상적으로 적합한 영상인지를 t-test를 실시하여 통계적으로 평가한 결과 DICOM CT영상의 경우 평균 평가 값이 비교적 임상적 진단에 적합한 영상임을 확인하였다.

삼차원 프린팅 기술을 이용한 전산화단층영상 품질 측정용 팬텀 제작 및 비교 연구 (A Study on the Fabrication and Comparison of the Phantom for Computed Tomography Image Quality Measurements Using Three-Dimensions Printing Technology)

  • 윤명성;홍순민;허영철;한동균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제41권6호
    • /
    • pp.595-602
    • /
    • 2018
  • Quality control (QC) of Computed Tomography (CT) devices is based on image quality measurement on AAPM CT phantom which is a standard phantom. Although it is possible to control the accuracy of the CT apparatus, it is expensive and has a disadvantage of low penetration rate. Therefore, in this study, we make image quality measurement phantom at low cost using FFF (Fused Filament Fabrication) type three-dimensional printer and try to analyze the usefulness, compare it with existing standard phantom. To print a phantom, We used three-dimensional printer of the FFF system and PLA (Poly Lactic Acid, density: $1.24g/cm^3$) filament, and the CT device of 64 MDCT (Aquilion CX, Toshiba, Japan). In addition, we printed a phantom using three-dimensional printer after design using various tool based on existing standard phantom. For image quality evaluation, AAPM CT phantom and self-generated phantom were measured 10 times for each block. The measured data were analyzed for significance using the Mannwhiteney U-test of SPSS (Version 22.0, SPSS, Chicago, IL, USA). As a result of the analysis, phantom fabricated with three-dimensional printer and standard phantom showed no significant difference (p>0.05). Furthermore, we confirmed that image quality measurement performance of a phantom using three-dimensional printer is similar to the existing standard phantom. In conclusion, we confirmed the possibility of low cost phantom fabrication using three dimensional printer.