International Journal of Vascular Biomedical Engineering
/
v.4
no.1
/
pp.27-30
/
2006
Background; Pleural micro-metastasis of lung cancer is detected by touch print cytology or pleural lavage cytology, but its prognostic impact has not elucidated yet. We hypothesize that recurrence may depend on the amount of tumor cells disseminated in pleural cavity, if the invasiveness of all cancer is the same. To predict the amount of tumor cells disseminated in pleural cavity, we need pleural surface area, distributed pattern of cells and concentration of cells per unit area. Human pleural surface area has not reported yet. In this report, we calculate the normal human pleural surface area using CT image data processing. Methods; Twenty persons were checked CT scan, and we obtained the data from each image. In order to calculate the pleural surface, the outline of lung was firstly extruded from CT image data using home-made Digitizer program. And the distance between CT images was calculated from the extruded outline. Finally a normal human pleural surface was calculated from function between the distance of consecutive CT images and the calculated length. Results; Their mean age is $65{\pm}12$ years old (range $26{\sim}77$), body weight is $62{\pm}9\;kg\;(48{\sim}80)$, and height is $167{\pm}6\;cm\;(156{\sim}176)$. The number of images used is $36{\pm}7\;(24{\sim}51)$. Pleural surface area is $211,888{\pm}35,756\;mm^2\;(143,880{\sim}279,576)$. Right-side pleural surface area is $107,932\;mm^2$ and Lt is $103,955\;mm^2$. Costal, mediastinal and diaphragmatic surfaces of right-side pleura are $77,483\;mm^2,\;39,057\;mm^2,\;and\;8,608\;mm^2$ respectively, and left-side are $72,497\;mm^2,\;35,578\;mm^2,\;and\;4,120\;mm^2$ respectively. Conclusion; Normal human pleural surface area is calculated using CT image data at first and the result is about $0.212\;m^2$.
High quality X-ray computed microtomography (micro-CT) imaging of internal microstructures and pore space in geomaterials is often hampered by some inherent noises embedded in the images. In this paper, we introduce image calibration techniques for removing the most common noises in X-ray micro-CT, cupping (brightness difference between the periphery and central regions) and ring artifacts (consecutive concentric circles emanating from the origin). The artifacts removal sequentially applies coordinate transformation, normalization, and low-pass filtering in 2D Fourier spectrum to raw CT-images. The applicability and performance of the techniques are showcased by describing extraction of 3D pore structures from micro-CT images of porous basalt using artifacts reductions, binarization, and volume stacking. Comparisions between calibrated and raw images indicate that the artifacts removal allows us to avoid the overestimation of porosity of imaged materials, and proper calibration of the artifacts plays a crucial role in using X-ray CT for geomaterials.
Purpose : To generate the axial, coronal and sagittal images from conventional simulation images, as a preliminary study of broad-beam simulator CT. Methods and Materials : Volumetric filtered back-projection was performed using 90 sheets of films from conventional simulator for every $4^{\circ}$ gantry angle. Two mAs exposure condition for 120kvp beam qualify at SFD 140cm was given to each film. Outside the silhouette portion was removed and scatter component was deconvolved before back-projection. Results : The axial, the sagittal and the coronal images with same spatial resolutions over all direction could be obtained. But image quality was very poor. Conclusion : CT images could be obtained using broad-beam. Scatter deconvolution technique was effective for this reconstruction. The fact that same spatial resolutions over all direction tells us the possibility of application of this technique to DRR or Simulator-CT. But the quality of image should be improved for clinical application practically.
Kim, Yon-Lae;Yoon, Young-Woo;Jung, Jae-Yong;Lee, Jeong-Woo;Chung, Jin-Beom
Journal of radiological science and technology
/
v.44
no.4
/
pp.367-373
/
2021
A quality assurance of computed tomography(CT) have done seven items that were water attenuation coefficient, noise, homogeneity, spatial resolution, contrast resolution, slice thickness, artifact using by standard phantom. But there is no quality assurance items and methods for CT simulator at domestic institutions yet. Therefore the study aimed to access the CT dose index(CTDI), table tilting, image distortion, laser accuracy, table movement accuracy and CT seven items for CT simulator quality assurance. The CTDI at the center of the head phantom was 0.81 for 80 kVp, 1.55 for 100 kVp, 2.50 for 120 mm, 0.22 for 80 kVp at the center of the body phantom, 0.469 for 100 kVp, and 0.81 for 120 kVp. The table tilting was within the tolerance range of ±1.0° or less. Image distortion had 1 mm distortion in the left and right images based on the center, and the laser accuracy was measured within ±2 mm tolerance. The purpose of this study is to improve the quality assurance items suitable for the current situation in Korea in order to protect the normal tissues during the radiation treatment process and manage the CT simulator that is implemented to find the location of the tumor more clearly. In order to improve the accuracy of the CT simulator when looking at the results, the error range of each item should be small. It is hoped that the quality assurance items of the CT simulator will be improved by suggesting the quality assurance direction of the CT simulator in this study, and the results of radiation therapy will also improve.
The image data amount that used in medical institution with great development of medical technology is increasing rapidly. Therefore, people need automation method that use image processing description than macrography of doctors for analysis many medical image. In this paper. we propose that acquire texture information to using GLCM about liver area of abdomen CT image, and automatically detects liver tumor using PCA from this data. Method by one feature as intensity of existent liver humor detection was most but we changed into 4 principal component accumulation images using GLCM's texture information 8 feature. Experiment result, 4 principal component accumulation image's variance percentage is 89.9%. It was seen this compare with liver tumor detecting that use only intensity about 92%. This means that can detect liver tumor even if reduce from dimension of image data to 4 dimensions that is the half in 8 dimensions.
Objective: To compare image quality and radiation dose of high-pitch dual-source spiral cardiothoracic computed tomography (CT) between non-electrocardiography (ECG)-synchronized and prospectively ECG-triggered data acquisitions in young children with congenital heart disease. Materials and Methods: Eighty-six children (${\leq}3$ years) with congenital heart disease who underwent high-pitch dual-source spiral cardiothoracic CT were included in this retrospective study. They were divided into two groups (n = 43 for each; group 1 with non-ECG-synchronization and group 2 with prospective ECG triggering). Patient-related parameters, radiation dose, and image quality were compared between the two groups. Results: There were no significant differences in patient-related parameters including age, cross-sectional area, body density, and water-equivalent area between the two groups (p > 0.05). Regarding radiation dose parameters, only volume CT dose index values were significantly different between group 1 ($1.13{\pm}0.09mGy$) and group 2 ($1.07{\pm}0.12mGy$, p < 0.02). Among image quality parameters, significantly higher image noise ($3.8{\pm}0.7$ Hounsfield units [HU] vs. $3.3{\pm}0.6HU$, p < 0.001), significantly lower signal-to-noise ratio ($105.0{\pm}28.9$ vs. $134.1{\pm}44.4$, p = 0.001) and contrast-to-noise ratio ($84.5{\pm}27.2$ vs. $110.1{\pm}43.2$, p = 0.002), and significantly less diaphragm motion artifacts ($3.8{\pm}0.5$ vs. $3.7{\pm}0.4$, p < 0.04) were found in group 1 compared with group 2. Image quality grades of cardiac structures, coronary arteries, ascending aorta, pulmonary trunk, lung markings, and chest wall showed no significant difference between groups (p > 0.05). Conclusion: In high-pitch dual-source spiral pediatric cardiothoracic CT, additional ECG triggering does not substantially reduce motion artifacts in young children with congenital heart disease.
Xing, Lumin;Liu, Wenjian;Liu, Xiaoliang;Li, Xin;Wang, Han
Advances in nano research
/
v.12
no.2
/
pp.185-195
/
2022
Deep learning is another field of artificial intelligence (AI) utilized for computer aided diagnosis (CAD) and image processing in scientific research. Considering numerous mechanical repetitive tasks, reading image slices need time and improper with geographical limits, so the counting of image information is hard due to its strong subjectivity that raise the error ratio in misdiagnosis. Regarding the highest mortality rate of Lung cancer, there is a need for biopsy for determining its class for additional treatment. Deep learning has recently given strong tools in diagnose of lung cancer and making therapeutic regimen. However, identifying the pathological lung cancer's class by CT images in beginning phase because of the absence of powerful AI models and public training data set is difficult. Convolutional Neural Network (CNN) was proposed with its essential function in recognizing the pathological CT images. 472 patients subjected to staging FDG-PET/CT were selected in 2 months prior to surgery or biopsy. CNN was developed and showed the accuracy of 87%, 69%, and 69% in training, validation, and test sets, respectively, for T1-T2 and T3-T4 lung cancer classification. Subsequently, CNN (or deep learning) could improve the CT images' data set, indicating that the application of classifiers is adequate to accomplish better exactness in distinguishing pathological CT images that performs better than few deep learning models, such as ResNet-34, Alex Net, and Dense Net with or without Soft max weights.
In tomographic image reconstruction, the focus is on developing CT image reconstruction methods that can maintain high image quality while reducing patient radiation exposure. Typically, statistical image reconstruction methods have the ability to generate high-quality and accurate images while significantly reducing patient radiation exposure. However, in cases like CT image reconstruction, which involve multi-dimensional parameter estimation, the degree of the Hessian matrix of the penalty function is very large, making it impossible to calculate. To solve this problem, the author proposed the PEMG-1 algorithm. However, the PEMG-1 algorithm has issues with the convergence speed, which is typical of statistical image reconstruction methods, and increasing the penalty log-likelihood. In this study, we propose a reconstruction algorithm that ensures fast convergence speed and monotonic increase in likelihood. The basic structure of this algorithm involves sequentially updating groups of pixels instead of updating all parameters simultaneously with each iteration.
Jang, Eui Sun;Kwak, In Suk;Park, Sun Myung;Choi, Choon Ki;Lee, Hyuk;Kim, Soo Young;Choi, Sung Wook
The Korean Journal of Nuclear Medicine Technology
/
v.17
no.2
/
pp.67-71
/
2013
Purpose: The Change of CT exposure condition have a effect on image quality and patient exposure dose. In this study, we evaluated effect CT image quality and SUV when CT parameters (Pitch, Rotation time) were changed. Materials and Methods: Discovery Ste (GE, USA) was used as a PET/CT scanner. Using GE QA Phantom and AAPM CT Performance Phantom for evaluate Noise of CT image. Images are acquired by using 24 combinations that four stages pitch (0.562, 0.938, 1.375, 1.75:1) and six stages X-ray tube rotation time (0.5s-1.0s). PET images are acquired using 1994 NEMA PET Phantom ($^{18}F-FDG$ 5.3 kBq/mL, 2.5 min/frame). For noise test, noise are evaluated by standard deviation of each image's CT numbers. And then we used expectation noise according to change of DLP (Dose Length Product) to experimental noise ratio for index of effectiveness. For spatial resolution test, we confirmed that it is possible to identify to 1.0 mm size of the holes at the AAPM CT Performance Phantom. Finally we evaluated each 24 image's SUV. Results: Noise efficiency were 1.00, 1.03, 1.01, 0.96 and 1.00, 1.04, 1.02, 0.97 when pitch changes at the QA Phantom and AAPM Phantom. In case of X-ray tube rotation time changes, 0.99, 1.02, 1.00, 1.00, 0.99, 0.99 and 1.01, 1.01, 0.99, 1.01, 1.01, 1.01 at the QA Phantom and AAPM Phantom. We could identify 1.0 mm size of the holes all 24 images. Also, there were no significant change of SUV and all image's average SUV were 1.1. Conclusion: 1.75:1 pitch is the most effective value at the CT image evaluation according to pitch change and It doesn't affect to the spatial resolution and SUV. However, the change of rotation time doesn't affect anything. So, we recommend to use the effective pitch like 1.75:1 and adequate X-ray tube rotation time according to patient size.
June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
Korean Journal of Radiology
/
v.23
no.4
/
pp.402-412
/
2022
Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.