• Title/Summary/Keyword: CT image processing

Search Result 185, Processing Time 0.029 seconds

An Efficient CT Image Denoising using WT-GAN Model

  • Hae Chan Jeong;Dong Hoon Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.5
    • /
    • pp.21-29
    • /
    • 2024
  • Reducing the radiation dose during CT scanning can lower the risk of radiation exposure, but not only does the image resolution significantly deteriorate, but the effectiveness of diagnosis is reduced due to the generation of noise. Therefore, noise removal from CT images is a very important and essential processing process in the image restoration. Until now, there are limitations in removing only the noise by separating the noise and the original signal in the image area. In this paper, we aim to effectively remove noise from CT images using the wavelet transform-based GAN model, that is, the WT-GAN model in the frequency domain. The GAN model used here generates images with noise removed through a U-Net structured generator and a PatchGAN structured discriminator. To evaluate the performance of the WT-GAN model proposed in this paper, experiments were conducted on CT images damaged by various noises, namely Gaussian noise, Poisson noise, and speckle noise. As a result of the performance experiment, the WT-GAN model is better than the traditional filter, that is, the BM3D filter, as well as the existing deep learning models, such as DnCNN, CDAE model, and U-Net GAN model, in qualitative and quantitative measures, that is, PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index Measure) showed excellent results.

A Study on the Development of a MPACS (시범 MPAC 시스템 개발에 관한 연구)

  • 김근섭;임호근
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.215-222
    • /
    • 1991
  • In this paper, we present a result of our study on how to construct a pilot MPACS (medical hic lure archiving and communication System) based on X -Window system. The proposed MPACS Is composed of image acquisition units, image archiving and processing units, display units, and all units are Interfaced with a LAN The image management is done according to the TIFF (Tagged Image File Format) , and the dis- play system is built upon generally accepted software packages, namely the X -Window system. Also, lossless and lossy digital image compression methods were implemented and tested with X -ray and CT images.

  • PDF

A Study on Stereo Visualization of the X-ray Scanned Image Based on Volume Reconstruction (볼륨기반 X-선 스캔영상의 3차원 형상화 연구)

  • Lee, Nam-Ho;Park, Soon-Yong;Hwang, Young-Gwan;Park, Jong-Won;Lim, Yong-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1583-1590
    • /
    • 2011
  • As the existing radiation scanning systems use 2-dimensional radiation scanned images, the low accuracy has been pointed out as a problem of it. This research analyzes the applicability of the stereo image processing technique to X-ray scanned images. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. As the radiation image is just a density information of the scanned object, the direct application of the general stereo image processing techniques to it is inefficient. To overcome this limitation of a stereo image processing in radiation area, we reconstruct 3-D shapes of the edges of the objects. Also, we proposed a new volume based 3D reconstruction algorithm. Experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for such objects which CT or MRI cannot inspect due to restricted scan environment.

Pulmonary Nodule Registration using Template Matching in Serial CT Scans (연속 CT 영상에서 템플릿 매칭을 이용한 폐결절 정합)

  • Jo, Hyun-Hee;Hong, He-Len
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.623-632
    • /
    • 2009
  • In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.

Estimation of Void Ratio of Sandy Soil Using X-ray CT Scan (X-ray CT 스캔을 이용한 사질토 간극비 측정)

  • Kim, Kwang-Yeom;Shin, Hyu-Seong;Heo, Seong-Jun;Yim, Sung-Bin;Kwon, Young-Cheul;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.87-97
    • /
    • 2011
  • In this study, a new methodology by using the X-ray CT scan is proposed for estimating void ratio of sandy soil. The general problems in high resolution X-ray CT scan such as beam hardening and ring artifact had been successfully settled up using thin metal plate filter and some calibration process. In order to calculate the void ratio of sand from its CT image, the procedures and algorithm for CT image processing are developed. CT scan tests for Joomunjin sand are carried out to verify its applicability to void ratio testing.

Automatic Analysis of Bone Formation in a Mouse Model of Frontal Bone Defect (전두골 결손 마우스 모델의 골형성 자동 분석)

  • Kang, Sun-Kyung;Jung, Sung-Tae
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.997-1007
    • /
    • 2015
  • In this paper, we propose a method for automatically analyzing the bone formation in a mouse model of frontal bone defect. We perforate two holes of 0.8mm diameter in the frontal bone and observe the bone formation process using a micro CT. Because the conventional analysis software of the micro CT does not support automatic analysis of the bone formation status, we have to use a manual analysis method. However the manual analysis is very cumbersome and requires a lot of time, we propose an automatic analysis method. It rotates the image around three axes directions so that the mouse's skull come into regular position. It calculates the cumulative image of the voxel values for the perforated bone surface. It estimates the hole location by finding the darkest point in the cumulative image. The proposed method was applied to 24 CT images of saline administration group and PTH administration group and hole location was estimated. BV/TV index was calculated for the estimated hole to evaluate the bone formation status. Experimental results showed that bone formation process is more active in PTH administration group. The method proposed in this paper could replace successfully the cumbersome and time consuming manual job.

Comparison of different radiographic methods for the detection of the mandibular canal

  • Kim Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.33 no.4
    • /
    • pp.199-205
    • /
    • 2003
  • Purpose: To compare the visibility of the mandibular canal at the different radiographic methods such as conventional panoramic radiographs, Vimplant multi planar reformatting (MPR)-CT panoramic images, Vimplant MPR-CT paraxial images and film-based DentaScan MPR-CT images. Materials and Methods: Data of 11 mandibular dental implant patients, who had been planned treatment utilizing both panoramic and MPR-CT examination with DentaScan software (GE Medical systems, Milwaukee, USA), were used in this study. The archived axial CT data stored on CD-R discs were transferred to a personal computer with 17' LCD monitor. Paraxial and panoramic images were reconstructed using Vimplant software (CyberMed Inc., Seoul, Korea). Conventional panoramic radiographs, monitor-based Vimplant MPR-CT panoramic images, monitor-based Vimplant MPR-CT paraxial images, and film-based DentaScan MPR-CT images were evaluated for visibility of the mandibular canal at the mental foramen, 1 cm, 2 cm, and 3 cm posterior to mental foramen using the 4-point grading score. Results: Vimplant MPR-CT panoramic, paraxial, and DentaScan MPR-CT images revealed significantly clearer images than conventional panoramic radiographs. Particularly at the region 1 em posterior to mental foramen, conventional panoramic radiographs showed a markedly lower percentage of 'excellent' mandibular canal images than images produced by other modalites. Vimplant MPR-CT and DentaScan MPR-CT images did not show significant difference in visibility of the mandibular canal. Conclusion: The study results show that Vimplant and DentaScan MPR-CT imaging systems offer significantly better images of the mandibular canal than conventional panoramic radiograph.

  • PDF

Background Removing for Digital image self-adaptive acquisition in medical X-ray imaging

  • Li, Xun;Kim, Young-Ju;Song, Young-Jun
    • International Journal of Contents
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2008
  • In this paper, we propose a new method of background removing for digital self-adaptive acquisition in medical X-ray imaging. We analysis the construction of video digital acquisition system and main factors of acquired image quality, propose a more efficiency method to against background non-uniformly. With proposed method, non-uniform illumination back ground was well removed without image quality degradation.

Analysis of 3D Geometry and Compressive Behavior of Aluminum Open Cell Foam Using X-ray Micro CT (마이크로 X-ray CT를 활용한 알루미늄 개방형 폼의 형상 및 압축 거동 분석)

  • Kim, Y.I.;Kim, J.H.;Lee, J.K.;Kim, D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.518-523
    • /
    • 2011
  • The three dimensional geometries of an aluminum open cell foam before and after uniaxial compressive loading were investigated using the X-ray micro CT(computed tomography). Aluminum 6101-T6 open cell foams of 10, 20, 40 ppi (pore per inch) were considered in this work. After the serial sectioning CT images of aluminum foams were obtained from non-destructive X-ray images, the exact 3D structure were reproduced and visualized with commercial image processing program. The relative density ratio was around the 7.0 to 9.0 range, the unit cells showed anisotropic shapes having the different dimensional ratios of 1.1 to 1.3 between the rise and the transverse directions. The yield stress increased with the relative density ratio and the volumetric strain increased proportionally with compressive strain. The plateau stress in the compressive stress-strain curve was caused by the buckling of ligaments.

Gamma Ray Detection Processing in PET/CT scanner (PET/CT 장치의 감마선 검출과정)

  • Park, Soung-Ock;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.29 no.3
    • /
    • pp.125-132
    • /
    • 2006
  • The PET/CT scanner is an evolution in image technology. The two modalities are complementary with CT and PET images. The PET scan images are well known as low resolution anatomic landmak, but such problems may help with interpretation detailed anatomic framework such as that provided by CT scan. PET/CT offers some advantages-improved lesion localization and identification, more accurate tumor staging. etc. Conventional PET employs tranmission scan require around 4 min./bed position and 30 min. for whole body scan. But PET/CT scanner can reduced by 50% in whole body scan. Especially nowadays PET scanner LSO scintillator-based from BGO without septa and operate in 3-D acquisition mode with multidetectors CT. PET/CT scanner fusion problems solved through hardware rather than software. Such device provides with the capability to acquire accurately aligned anatomic and functional images from single scan. It is very important to effective detection from gamma ray source in PETdetector. And can be offer high quality diagnostic images. So we have study about detection processing of PET detector and high quality imaging process.

  • PDF