• Title/Summary/Keyword: CT image analysis

Search Result 490, Processing Time 0.022 seconds

Noise Measurement by Percentage of Effective Linear Attenuation Coefficient of Water in CT Image of AAPM CT Performance Phantom (AAPM CT 성능 팬텀의 CT영상에서 물 유효선감쇠계수의 백분율에 의한 노이즈 측정)

  • Jong-Eon, Kim;Sang-Hun, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.6
    • /
    • pp.771-778
    • /
    • 2022
  • The purpose of this study is to present a method of measuring noise by the percentage of effective line attenuation coefficient of water that can be used for quality control of CT image noise using AAPM CT performance phantom in clinical practice. In the CT images obtained by scanning the AAPM CT performance phantom with a 120 kVp CT X-ray beam, the mean CT number was measured for each pin and water in the CT number linearity insert part. The effective energy was determined as the photon energy with the largest correlation coefficient from the correlation coefficients of the linear regression analysis of the measured mean CT number for each pin and water and the linear attenuation coefficient for each photon energy. And for water and acrylic, the contrast scale was calculated as 0.000188 cm-1 · HU-1 from the measured mean CT number and effective line attenuation coefficient. Using the calculated contrast scale, the effective line attenuation coefficient of water, and the standard deviation measured in the water of the alignment pin part of the AAPM CT performance phantom, The noise measurement value by the percentage of effective line attenuation coefficient of water obtained 0.31 ~ 0.52% in the range of 100 ~ 300 mAs.

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Analysis of Orientation and Distribution of Steel Fiber in Fiber Reinforced Concrete Column by Micro-CT Scanning (Micro-CT 스캐닝을 통한 섬유보강 콘크리트 기둥내부 강섬유의 배향성 및 위치분포 분석)

  • Park, Tae-Hoon;Suh, Heong-Won;Bae, Sung-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.23-24
    • /
    • 2019
  • In this study, analysis of steel fiber orientation and distribution inside fiber reinforced concrete was performed using micro-CT scanning technology. Samples were extracted from the column according to its height and distance from the mold. Samples were scanned in order to attain the image of steel fibers then region of interest were obtained by binarization process. By calculating the principle moment of inertia of each fiber, direction vector, scale, center postion, volume, and surface area were gained in order to analyze the orientation and distribution. Most of the fibers inside the column tended to be perpendicular to the main axis of the column. Moreover, most of the fibers appeared at the bottom of the column and at the position where it is farthest from the mold.

  • PDF

Spine Computed Tomography to Magnetic Resonance Image Synthesis Using Generative Adversarial Networks : A Preliminary Study

  • Lee, Jung Hwan;Han, In Ho;Kim, Dong Hwan;Yu, Seunghan;Lee, In Sook;Song, You Seon;Joo, Seongsu;Jin, Cheng-Bin;Kim, Hakil
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.3
    • /
    • pp.386-396
    • /
    • 2020
  • Objective : To generate synthetic spine magnetic resonance (MR) images from spine computed tomography (CT) using generative adversarial networks (GANs), as well as to determine the similarities between synthesized and real MR images. Methods : GANs were trained to transform spine CT image slices into spine magnetic resonance T2 weighted (MRT2) axial image slices by combining adversarial loss and voxel-wise loss. Experiments were performed using 280 pairs of lumbar spine CT scans and MRT2 images. The MRT2 images were then synthesized from 15 other spine CT scans. To evaluate whether the synthetic MR images were realistic, two radiologists, two spine surgeons, and two residents blindly classified the real and synthetic MRT2 images. Two experienced radiologists then evaluated the similarities between subdivisions of the real and synthetic MRT2 images. Quantitative analysis of the synthetic MRT2 images was performed using the mean absolute error (MAE) and peak signal-to-noise ratio (PSNR). Results : The mean overall similarity of the synthetic MRT2 images evaluated by radiologists was 80.2%. In the blind classification of the real MRT2 images, the failure rate ranged from 0% to 40%. The MAE value of each image ranged from 13.75 to 34.24 pixels (mean, 21.19 pixels), and the PSNR of each image ranged from 61.96 to 68.16 dB (mean, 64.92 dB). Conclusion : This was the first study to apply GANs to synthesize spine MR images from CT images. Despite the small dataset of 280 pairs, the synthetic MR images were relatively well implemented. Synthesis of medical images using GANs is a new paradigm of artificial intelligence application in medical imaging. We expect that synthesis of MR images from spine CT images using GANs will improve the diagnostic usefulness of CT. To better inform the clinical applications of this technique, further studies are needed involving a large dataset, a variety of pathologies, and other MR sequence of the lumbar spine.

Analysis of Set-up Errors during CT-scan, Simulation, and Treatment Process in Breast Cancer Patients (유방암 환자의 모의치료, CT 스캔 및 치료 과정에서 발생되는 준비 오차 분석)

  • Lee, Re-Na
    • Radiation Oncology Journal
    • /
    • v.23 no.3
    • /
    • pp.169-175
    • /
    • 2005
  • Purpose: Although computed tomography (CT) simulators are commonly used in radiation therapy department, many Institution still use conventional CT for treatments. In this study the setup errors that occur during simulation, CT scan (diagnostic CT scanner), and treatment were evaluated for the twenty one breast cancer patients. Materials and Methods: Errors were determined by calculating the differences in isocenter location, SSD, CLD, and locations of surgical clips implanted during surgery. The anatomic structures on simulation film and DRR image were compared to determine the movement of isocenter between simulation and CT scan. The isocetner point determined from the radio-opaque wires placed on patient's surface during CT scan was moved to new position if there was anatomic mismatch between the two images Results: In 7/21 patients, anatomic structures on DRR Image were different from the simulation Image thus new isocenter points were placed for treatment planning. The standard deviations of the diagnostic CT setup errors relative to the simulator setup in lateral, longitudinal, and anterior-posterior directions were 2.3, 1.6, and 1.6 mm, respectively. The average variation and standard deviation of SSD from AP field were 1.9 mm and 2.3 mm and from tangential fields were 2.8 mm and 3.7 mm. The variation of the CLD for the 21 patients ranged from 0 to 6 mm between simulation and DRR and 0 to 5 mm between simulation and treatment. The group systematic errors analyzed based on clip locations were 1.7 mm in lateral direction, 2.1 mm in AP direction, and 1.7 mm in SI direction. Conclusion: These results represent that there was no significant differences when SSD, CLD, clips' locations and isocenter locations were considered. Therefore, it is concluded that when a diagnostic CT scanner is used to acquire an image, the set-up variation is acceptable compared to using CT simulator for the treatment of breast cancer. However, the patient has to be positioned with care during CT scan in order to reduce the setup error between simulation and CT scan.

Image Quality Evaluation according to the Application of Air Mattress on Computed Tomography Equipment Table (전산화단층촬영장비 테이블의 에어 매트리스 적용에 따른 화질평가)

  • Jeon, Sang-Won;Pak, Jae-Yun;Suh, Tae-Suk
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.819-825
    • /
    • 2020
  • The purpose of this study was to evaluate the usefulness of the developed air mattress for reducing the deterioration of image quality due to the scattered radiation generated on the computed tomography equipment table. 5 cm and 10 cm thick air mattresses were developed and the image quality was measured by scanning the AAPM phantom according to thickness and thickness. Statistical significance was confirmed by One Way Analysis of Variance(ANOVA) Compared with the AAPM phantom scanned in the standard method, the image with the air mattress did not show any difference, but when the air mattress was not applied, the CT number and uniformity were low and the noise was high, and the spatial resolution Respectively. The developed air mattress has no harmful effect on the diagnostic image, it is very effective in improving the image quality and can increase the CT image quality by simply applying Air Mattress to existing equipment without using the technology applied to the latest and high-cost equipment.

Tetrahedral Mesh Generation from CT Images of Thoracic Vertebra (흉추 CT 영상으로부터 사면체 요소망의 자동생성)

  • 박정민;권기환;전성재;채수원;이관행;이태수;서중근;박정율
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.150-153
    • /
    • 2002
  • The use of the finite element method for biomechanical analysis is increasing rapidly in recent years. Since biomechanical models are usually in very complex shapes, it takes a lot of time and efforts to build reasonable finite element models. In this paper, a new tetrahedral meshing algorithm from the series of 2-D computed tomography(CT) images has been proposed. In this scheme, the planar sections of three-dimensional objects and the side surfaces between two planar sections are triangulated first, and then an advancing front algorithm is employed to construct tetrahedral elements by using basic operators. A sample finite element model for thoracic vertebra is presented.

  • PDF

Measurements of Micro-Defects in the Aluminum Thixoformed Part using Computed Tomography(CT) Technology (CT를 이용한 알루미늄 반응고 성형품의 미세 결함 측정)

  • Lee, S.Y.;Kim, C.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.422-427
    • /
    • 2009
  • Computed tomography(CT) has been applied to measure micro-defects in the aluminum knuckle parts manufactured by the thixoforming process. 6061 aluminum alloys were used to form knuckle samples in the semi-solid temperature after the SIMA processing of billets. Tensile specimens were cut from the different locations in a thixoformed knuckle. The size and the distribution of forming defects in tensile specimens were analyzed using CT scanning and image analysis technology before tensile tests. It has been qualitatively shown that the stress-strain curves were significantly affected by the size and the distribution of forming defects although the defect sizes lie in the range of micro-meters.

3D Stereoscopic Image Generation of a 2D Medical Image (2D 의료영상의 3차원 입체영상 생성)

  • Kim, Man-Bae;Jang, Seong-Eun;Lee, Woo-Keun;Choi, Chang-Yeol
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.723-730
    • /
    • 2010
  • Recently, diverse 3D image processing technologies have been applied in industries. Among them, stereoscopic conversion is a technology to generate a stereoscopic image from a conventional 2D image. The technology can be applied to movie and broadcasting contents and the viewer can watch 3D stereoscopic contents. Further the stereoscopic conversion is required to be applied to other fields. Following such trend, the aim of this paper is to apply the stereoscopic conversion to medical fields. The medical images can deliver more detailed 3D information with a stereoscopic image compared with a 2D plane image. This paper presents a novel methodology for converting a 2D medical image into a 3D stereoscopic image. For this, mean shift segmentation, edge detection, intensity analysis, etc are utilized to generate a final depth map. From an image and the depth map, left and right images are constructed. In the experiment, the proposed method is performed on a medical image such as CT (Computed Tomograpy). The stereoscopic image displayed on a 3D monitor shows a satisfactory performance.

Background Removing for Digital image self-adaptive acquisition in medical X-ray imaging

  • Li, Xun;Kim, Young-Ju;Song, Young-Jun
    • International Journal of Contents
    • /
    • v.4 no.1
    • /
    • pp.12-15
    • /
    • 2008
  • In this paper, we propose a new method of background removing for digital self-adaptive acquisition in medical X-ray imaging. We analysis the construction of video digital acquisition system and main factors of acquired image quality, propose a more efficiency method to against background non-uniformly. With proposed method, non-uniform illumination back ground was well removed without image quality degradation.