• Title/Summary/Keyword: CT Training

Search Result 115, Processing Time 0.022 seconds

Dosimetric Evaluation of Amplitude-based Respiratory Gating for Delivery of Volumetric Modulated Arc Therapy (진폭 기반 호흡연동 체적변조회전방사선치료의 선량학적 평가)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Park, Jeong Hoon;Min, Chul Kee;Shin, Dong Oh;Choi, Sang Hyoun;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2015
  • The purpose of this study is to perform a dosimetric evaluation of amplitude-based respiratory gating for the delivery of volumetric modulated arc therapy (VMAT). We selected two types of breathing patterns, subjectively among patients with respiratory-gated treatment log files. For patients that showed consistent breathing patterns (CBP) relative to the 4D CT respiration patterns, the variability of the breath-holding position during treatment was observed within the thresholds. However, patients with inconsistent breathing patterns (IBP) show differences relative to those with CBP. The relative isodose distribution was evaluated using an EBT3 film by comparing gated delivery to static delivery, and an absolute dose measurement was performed with a $0.6cm^3$ Farmer-type ion chamber. The passing rate percentages under the 3%/3 mm gamma analysis for Patients 1, 2 and 3 were respectively 93.18%, 91.16%, and 95.46% for CBP, and 66.77%, 48.79%, and 40.36% for IBP. Under the more stringent criteria of 2%/2 mm, passing rates for Patients 1, 2 and 3 were respectively 73.05%, 67.14%, and 86.85% for CBP, and 46.53%, 32.73%, and 36.51% for IBP. The ion chamber measurements were within 3.5%, on average, of those calculated by the TPS and within 2.0%, on average, when compared to the static-point dose measurements for all cases of CBP. Inconsistent breathing patterns between 4D CT simulation and treatment may cause considerable dosimetric differences. Therefore, patient training is important to maintain consistent breathing amplitude during CT scan acquisition and treatment delivery.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Performance Improvement of Convolutional Neural Network for Pulmonary Nodule Detection (폐 결절 검출을 위한 합성곱 신경망의 성능 개선)

  • Kim, HanWoong;Kim, Byeongnam;Lee, JeeEun;Jang, Won Seuk;Yoo, Sun K.
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.237-241
    • /
    • 2017
  • Early detection of the pulmonary nodule is important for diagnosis and treatment of lung cancer. Recently, CT has been used as a screening tool for lung nodule detection. And, it has been reported that computer aided detection(CAD) systems can improve the accuracy of the radiologist in detection nodules on CT scan. The previous study has been proposed a method using Convolutional Neural Network(CNN) in Lung CAD system. But the proposed model has a limitation in accuracy due to its sparse layer structure. Therefore, we propose a Deep Convolutional Neural Network to overcome this limitation. The model proposed in this work is consist of 14 layers including 8 convolutional layers and 4 fully connected layers. The CNN model is trained and tested with 61,404 regions-of-interest (ROIs) patches of lung image including 39,760 nodules and 21,644 non-nodules extracted from the Lung Image Database Consortium(LIDC) dataset. We could obtain the classification accuracy of 91.79% with the CNN model presented in this work. To prevent overfitting, we trained the model with Augmented Dataset and regularization term in the cost function. With L1, L2 regularization at Training process, we obtained 92.39%, 92.52% of accuracy respectively. And we obtained 93.52% with data augmentation. In conclusion, we could obtain the accuracy of 93.75% with L2 Regularization and Data Augmentation.

Bladder filling variations during concurrent chemotherapy and pelvic radiotherapy in rectal cancer patients: early experience of bladder volume assessment using ultrasound scanner

  • Chang, Jee Suk;Yoon, Hong In;Cha, Hye Jung;Chung, Yoonsun;Cho, Yeona;Keum, Ki Chang;Koom, Woong Sub
    • Radiation Oncology Journal
    • /
    • v.31 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Purpose: To describe the early experience of analyzing variations and time trends in bladder volume of the rectal cancer patients who received bladder ultrasound scan. Materials and Methods: We identified 20 consecutive rectal cancer patients who received whole pelvic radiotherapy (RT) and bladder ultrasound scan between February and April 2012. Before simulation and during the entire course of treatment, patients were scanned with portable automated ultrasonic bladder scanner, 5 times consecutively, and the median value was reported. Then a radiation oncologist contoured the bladder inner wall shown on simulation computed tomography (CT) and calculated its volume. Results: Before simulation, the median bladder volume measured using simulation CT and bladder ultrasound scan was 427 mL (range, 74 to 1,172 mL) and 417 mL (range, 147 to 1,245 mL), respectively. There was strong linear correlation (R = 0.93, p < 0.001) between the two results. During the course of treatment, there were wide variations in the bladder volume and every time, measurements were below the baseline with statistical significance (12/16). At 6 weeks after RT, the median volume was reduced by 59.3% to 175 mL. Compared to the baseline, bladder volume was reduced by 38% or 161 mL on average every week for 6 weeks. Conclusion: To our knowledge, this study is the first to prove that there are bladder volume variations and a reduction in bladder volume in rectal cancer patients. Moreover, our results will serve as the basis for implementation of bladder training to patients receiving RT with full bladder.

Effects of SW Training using Robot Based on Card Coding on Learning Motivation and Attitude (카드 코딩 기반의 로봇을 활용한 SW 교육이 학습동기 및 태도에 미치는 영향)

  • Jun, SooJin
    • Journal of The Korean Association of Information Education
    • /
    • v.22 no.4
    • /
    • pp.447-455
    • /
    • 2018
  • The purpose of this study is to investigate the effects of SW education using robot based on card coding on learning motivation and attitude of elementary school students. To do this, we conducted 8-hour SW education based on the CT concept of sequence, repetition, event, and control using the Truetrue, which is coded by command card for the 3rd grade of elementary school students. For the experiment, we examined the learning motivation for SW education and the attitude toward SW education based on the robot in advance. As a result, the students' motivation to learn SW education showed a statistically significant improvement. In addition, the attitude toward robot-based SW education improved statistically significantly as "good, convenient, interesting, easy, friendly, active, special, understandable, easy, simple". These results are expected to contribute to the expansion of education through various approaches of SW education.

Development of Image Guided 3D Localization Program for Stereotactic Brain Biopsy (뇌 정위 생검술을 위한 영상지원 3차원 국재 프로그램 개발)

  • Lee Do Heui;Lee Dong Joon
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.197-201
    • /
    • 2004
  • Stereotactic brain biopsy using stereotactic head frame such as CRW (Radionics, USA) has demonstrated a precise lesion localizing accuracy. In this study, we developed the target point calculation program for brain lesion biopsy using CRW stereotactic head frame and designed a phantom for verify the new developed program. The phantom was designed to have capability to simulate clinical stereotactic brain biopsy. The phantom has 10 vertical rods whose diameters are 6mm and tip of each rods are 2mm. Each rod has different length, 150 mm x 4 ea, 130 mm x 4 ea, 110 mm x 2 ea. CT images were acquired with Simens CT scanner as continuous transverse slice, 1 mm thickness in a 25 cm field of view and stored in a dicom file as a 256 x 256 matrix. As a result, the developed new target localization program will be useful for planning and training in complicated 3 dimensional stereotactic brain biopsy.

  • PDF

Development of pre-procedure virtual simulation for challenging interventional procedures: an experimental study with clinical application

  • Seong, Hyunyoung;Yun, Daehun;Yoon, Kyung Seob;Kwak, Ji Soo;Koh, Jae Chul
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.403-412
    • /
    • 2022
  • Background: Most pain management techniques for challenging procedures are still performed under the guidance of the C-arm fluoroscope although it is sometimes difficult for even experienced clinicians to understand the modified three-dimensional anatomy as a two-dimensional X-ray image. To overcome these difficulties, the development of a virtual simulator may be helpful. Therefore, in this study, the authors developed a virtual simulator and presented its clinical application cases. Methods: We developed a computer program to simulate the actual environment of the procedure. Computed tomography (CT) Digital Imaging and Communications in Medicine (DICOM) data were used for the simulations. Virtual needle placement was simulated at the most appropriate position for a successful block. Using a virtual C-arm, the authors searched for the position of the C-arm at which the needle was visualized as a point. The positional relationships between the anatomy of the patient and the needle were identified. Results: For the simulations, the CT DICOM data of patients who visited the outpatient clinic was used. When the patients revisited the clinic, images similar to the simulated images were obtained by manipulating the C-arm. Transforaminal epidural injection, which was difficult to perform due to severe spinal deformity, and the challenging procedures of the superior hypogastric plexus block and Gasserian ganglion block, were successfully performed with the help of the simulation. Conclusions: We created a pre-procedural virtual simulation and demonstrated its successful application in patients who are expected to undergo challenging procedures.

Implementation of point-of-care platforms for rapid detection of porcine circovirus type 2

  • Chiao-Hsu Ke;Mao-Yuan Du;Wang-Ju Hsieh;Chiu-Chiao Lin;James Mingjuh Ting;Ming-Tang Chiou;Chao-Nan Lin
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.28.1-28.11
    • /
    • 2024
  • Background: Porcine circovirus type 2 (PCV2) infection is ubiquitous around the world. Diagnosis of the porcine circovirus-associated disease requires clinic-pathological elements together with the quantification of viral loads. Furthermore, given pig farms in regions lacking access to sufficient laboratory equipment, developing diagnostic devices with high accuracy, accessibility, and affordability is a necessity. Objectives: This study aims to investigate two newly developed diagnostic tools that may satisfy these criteria. Methods: We collected 250 specimens, including 170 PCV2-positive and 80 PCV2-negative samples. The standard diagnosis and cycle threshold (Ct) values were determined by quantitative polymerase chain reaction (qPCR). Then, two point-of-care (POC) diagnostic platforms, convective polymerase chain reaction (cPCR, qualitative assay: positive or negative results are shown) and EZtargex (quantitative assay: Ct values are shown), were examined and analyzed. Results: The sensitivity and specificity of cPCR were 88.23% and 100%, respectively; the sensitivity and specificity of EZtargex were 87.65% and 100%, respectively. These assays also showed excellent concordance compared with the qPCR assay (κ = 0.828 for cPCR and κ = 0.820 for EZtargex). The statistical analysis showed a great diagnostic power of the EZtargex assay to discriminate between samples with different levels of positivity. Conclusions: The two point-of-care diagnostic platforms are accurate, rapid, convenient and require little training for PCV2 diagnosis. These POC platforms can discriminate viral loads to predict the clinical status of the animals. The current study provided evidence that these diagnostics were applicable with high sensitivity and specificity in the diagnosis of PCV2 infection in the field.

Virtual Reality for Dental Implant Surgical Education (가상현실을 이용한 치과 임플란트 수술 교육)

  • Moon, Seong-Yong;Choi, Bong-Du;Moon, Young-Lae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.169-174
    • /
    • 2016
  • In this study, we evaluated the virtual reality model for dental implant surgery and discussed about the method to make the surgical environment for virtual reality with practical patient data. The anatomical model for patient face was fabricated by facial and oral scan data based on CT data. The simulation scenario was composed step by step fashion with Unity3D. From incision and sinus bone graft procedure which is needed to this patient model to implant installation and bone graft was included in this scenario. We used the HMD and leap motion for immersiveness and feeling of real operation. Twenty training doctor was attended this simulation study, and surveyed their satisfactory results by questionnaire. Implant surgery education program was showed the possibilities of educational tool for dental students and training doctors. Virtual reality for surgical education with HMD and leap motion had advantages, in terms of cheap prcie, easy access.

Imaging Predictors of Survival in Patients with Single Small Hepatocellular Carcinoma Treated with Transarterial Chemoembolization

  • Chan Park;Jin Hyoung Kim;Pyeong Hwa Kim;So Yeon Kim;Dong Il Gwon;Hee Ho Chu;Minho Park;Joonho Hur;Jin Young Kim;Dong Joon Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.2
    • /
    • pp.213-224
    • /
    • 2021
  • Objective: Clinical outcomes of patients who undergo transarterial chemoembolization (TACE) for single small hepatocellular carcinoma (HCC) are not consistent, and may differ based on certain imaging findings. This retrospective study was aimed at determining the efficacy of pre-TACE CT or MR imaging findings in predicting survival outcomes in patients with small HCC upon being treated with TACE. Besides, the study proposed to build a risk prediction model for these patients. Materials and Methods: Altogether, 750 patients with functionally good hepatic reserve who received TACE as the first-line treatment for single small HCC between 2004 and 2014 were included in the study. These patients were randomly assigned into training (n = 525) and validation (n = 225) sets. Results: According to the results of a multivariable Cox analysis, three pre-TACE imaging findings (tumor margin, tumor location, enhancement pattern) and two clinical factors (age, serum albumin level) were selected and scored to create predictive models for overall, local tumor progression (LTP)-free, and progression-free survival in the training set. The median overall survival time in the validation set were 137.5 months, 76.1 months, and 44.0 months for low-, intermediate-, and high-risk groups, respectively (p < 0.001). Time-dependent receiver operating characteristic curves of the predictive models for overall, LTP-free, and progression-free survival applied to the validation cohort showed acceptable areas under the curve values (0.734, 0.802, and 0.775 for overall survival; 0.738, 0.789, and 0.791 for LTP-free survival; and 0.671, 0.733, and 0.694 for progression-free survival at 3, 5, and 10 years, respectively). Conclusion: Pre-TACE CT or MR imaging findings could predict survival outcomes in patients with small HCC upon treatment with TACE. Our predictive models including three imaging predictors could be helpful in prognostication, identification, and selection of suitable candidates for TACE in patients with single small HCC.