• Title/Summary/Keyword: CT Images

Search Result 1,782, Processing Time 0.036 seconds

Effect of Sex and Menopausal Age on Thickness and Density of Membranous Bone : Focused on Computed Tomography in Squamous Portion of Temporal Bone (성별과 폐경기 나이가 막성골의 두께와 밀도에 미치는 영향 : 측두골 비늘부위 전산화단층영상을 중심으로)

  • Ji, Myeong-Hoon;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • The purpose of this study was to investigate the effect of sex and menopausal age on the thickness and density of squamous portion of the temporal bone as the membranous bone. Patients who visited a general hospital in Chungnam and had a computed tomography (CT) examination of the head. A retrospective study was conducted with 120 subjects (30 men under 55 years old, 30 men over 56 years old, 30 women under 55 years old, and 30 women over 56 years old). Axial images of the squamous portion in the temporal bone were obtained from CT of the head. For this image, a slice sensitive profile (SSP) was acquired with an image analysis program and these were evaluated. The thickness was measured by using a digital ruler to measure the full width at half maximum (FWHM) of the SSP, and the density was measured in hounsfield unit (HU). These by gender were measured to be about 0.5 mm thinner in the temporal bone in men than in women, and there was a significant difference. The density was measured to be about 200 HU higher in women than in men of it, and there was a significant difference. As a result, it in women was thicker and had a lower density. The thickness of it in men and women over 56 years of age was 0.8 mm or more thicker in women and less than 400 HU in density. As a result, the women group over the age of 56 showed a distinct increase in thickness and decrease in density, different from other target groups. It is expected that the results of this study could be used as basic data for a new bone density measurement site study.

Evaluation of mesial root canal configuration of mandibular first molars using micro-computed tomography

  • Salli, Gulay Altan;Egil, Edibe
    • Imaging Science in Dentistry
    • /
    • v.51 no.4
    • /
    • pp.383-388
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the root canal morphology of mesial roots of mandibular first molars. Materials and Methods: Forty extracted mandibular first molars were used in this study. The morphological examination of root canals was conducted in accordance with the Vertucci classification using micro-computed tomography (micro-CT). Any aberrant root canal configurations not included in the Vertucci classification were recorded, and their frequency was established using descriptive statistics. Intra-observer reliability was assessed using the Wilcoxon signed-rank test, while inter-observer reliability was assessed using the Cohen kappa test. Significance was evaluated at the P<0.05 level. Results: The mesial roots of mandibular first molars had canal configurations of type I (15%), type II (7.5%), type III (25%), type IV (10%), type V (2.5%), type VI (7.5%), and type VII (7.5%). The images showed 10 (25%) additional configuration types that were not included in the Vertucci classification. These types were 1-3-2-3, 1-2-3-2-3, 2-3-1, 2-3, 1-2-3-1, 2-1-2-3, 3-2-1, 1-2-3-1, 2-3-2-3, and 1-2-1-2-1. The intra-observer differences were not statistically significant(P>0.05) and the kappa value for inter-observer agreement was found to be 0.957. Conclusion: Frequent variations were detected in mesial roots of mandibular first molars. Clinicians should take into consideration the complex structure of the root canal morphology before commencing root canal treatment procedures to prevent iatrogenic complications. Micro-CT was a highly suitable method to provide accurate 3-dimensional visualizations of root canal morphology.

Evaluation of the accuracy of mobile cone-beam computed tomography after spinal instrumentation surgery

  • Eom, Ki Seong;Park, Eun Sung;Kim, Dae Won;Park, Jong Tae;Yoon, Kwon-Ha
    • Journal of Trauma and Injury
    • /
    • v.35 no.1
    • /
    • pp.12-18
    • /
    • 2022
  • Purpose: Pedicle screw fixation provides 3-column stabilization, multidimensional control, and a higher rate of interbody fusion. Although computed tomography (CT) is recommended for the postoperative assessment of pedicle screw fixation, its use is limited due to the radiation exposure dose. The purpose of this preliminary retrospective study was to assess the clinical usefulness of low-dose mobile cone-beam CT (CBCT) for the postoperative evaluation of pedicle screw fixation. Methods: The author retrospectively reviewed postoperative mobile CBCT images of 15 patients who underwent posterior pedicle screw fixation for spinal disease from November 2019 to April 2020. Pedicle screw placement was assessed for breaches of the bony structures. The breaches were graded based on the Heary classification. Results: The patients included 11 men and four women, and their mean age was 66±12 years. Of the 122 pedicle screws, 34 (27.9%) were inserted in the thoracic segment (from T7 to T12), 82 (67.2%) in the lumbar segment (from L1 to L5), and six (4.9%) in the first sacral segment. Although there were metal-related artifacts, the image of the screw position (according to Heary classification) after surgery could be assessed using mobile CBCT at all levels (T7-S1). Conclusions: Mobile CBCT was accurate in determining the location and integrity of the pedicle screw and identifying the surrounding bony structures. In the postoperative setting, mobile CBCT can be used as a primary modality for assessing the accuracy of pedicle screw fixation and detecting postoperative complications.

Surgical importance of the tympanic bone: multidetector computed tomography findings

  • Atlanoglu, Sahinde;Topuz, Muhammed Fatih
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.48 no.3
    • /
    • pp.149-154
    • /
    • 2022
  • Objectives: To measure tympanic bone thickness (anterior-superior, anterior-inferior, and inferior wall), external ear canal length, and tympanomandibular distance that can be useful in cases that undergo tympanic bone resection. Materials and Methods: The temporal computed tomography (CT) images of 349 patients were retrospectively evaluated. The anterior-inferior, anterior-superior, and inferior wall thicknesses; tympanomandibular distance; and external auditory canal (EAC) bone canal length were measured from the narrowest part of the canal. The shapes of the EAC in the coronal and sagittal planes were also examined. Results: The numbers of female and male patients were similar, and the mean age was 49.45±13.95 years. The anterior-superior, anterior-inferior, and inferior wall thicknesses were 1.92±0.60, 2.54±0.74, and 9.16±2.20 mm, respectively. The anterior-superior and anterior-inferior wall thicknesses and canal lengths were greater on the right side (P<0.001). All measurement values were higher in males, except right tympanomandibular distance (P<0.05). A non-significant negative correlation was found between the age of the participants and the left anterior-inferior wall and tympanomandibular distance on both sides. Intra-observer agreement was high for all measurements. We observed four main shapes in the external ear canal in the coronal plane: Type 3, Type 2, Type 1, and Type 4 in order of frequency on the right, and Type 2, Type 3, Type 1, and Type 4 on the left. In the sagittal plane, we detected three shapes: oval (74.4%), triangular (16.3%), and round (9.4%). Conclusion: The anterior wall thicknesses and tympanomandibular distance should be measured on preoperative temporal bone CT to safely perform tympanic bone anterior resection, which is required in some otological procedures, and also to prevent temporomandibular joint damage.

Changes of Physical and Chemical Properties for Making Raw Materials and Reproductions According to Manufacturing Stages in Traditional Korean White Porcelain

  • Kim, Du Hyeon;Jeong, Ji Youn;Oh, Eun Jeong;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.301-313
    • /
    • 2022
  • We made a Korean white porcelain or Joseon Baekja jar and based on the raw materials used and reproductions of each stage, we aimed to compare and analyze the physicochemical changes of the raw materials such as clay at each manufacturing stage, as well as identify the characteristics and correlations. Although the basic main components of clay and glaze material are similar, their texture becomes denser in the process of bisque firing pottery (Chobeol-pyeon) and glaze firing pottery (Jaebeol-pyeon), and we confirmed that in addition to the tendency of increasing vitrification, low-temperature minerals such as mica and illite gradually disappeared, while high-temperature minerals such as cristobalite were newly created. This phenomenon has also been verified by the rapid decrease in absorption rate while the change in specific gravity was small. In addition, the color was greatly affected by the firing atmosphere, and the yellow-red chromaticity of the raw materials was higher during bisque firing but showed a rapidly decreasing characteristic during glaze firing. The value of magnetic susceptibility, which is related to iron (Fe) component, showed a tendency to decrease in glaze firing pottery. CT images were confirmed as a method that can indirectly estimate the change in the material properties of the object step-by-step for the entire object. In conclusion, the study of manufacturing stages of reproduction can provide basic data for scientific research on the estimation of porcelain and pottery making technology and changes in raw materials.

Parallel Implementations of Digital Focus Indices Based on Minimax Search Using Multi-Core Processors

  • HyungTae, Kim;Duk-Yeon, Lee;Dongwoon, Choi;Jaehyeon, Kang;Dong-Wook, Lee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.2
    • /
    • pp.542-558
    • /
    • 2023
  • A digital focus index (DFI) is a value used to determine image focus in scientific apparatus and smart devices. Automatic focus (AF) is an iterative and time-consuming procedure; however, its processing time can be reduced using a general processing unit (GPU) and a multi-core processor (MCP). In this study, parallel architectures of a minimax search algorithm (MSA) are applied to two DFIs: range algorithm (RA) and image contrast (CT). The DFIs are based on a histogram; however, the parallel computation of the histogram is conventionally inefficient because of the bank conflict in shared memory. The parallel architectures of RA and CT are constructed using parallel reduction for MSA, which is performed through parallel relative rating of the image pixel pairs and halved the rating in every step. The array size is then decreased to one, and the minimax is determined at the final reduction. Kernels for the architectures are constructed using open source software to make it relatively platform independent. The kernels are tested in a hexa-core PC and an embedded device using Lenna images of various sizes based on the resolutions of industrial cameras. The performance of the kernels for the DFIs was investigated in terms of processing speed and computational acceleration; the maximum acceleration was 32.6× in the best case and the MCP exhibited a higher performance.

Cervical spine reconstruction after total vertebrectomy using customized three-dimensional-printed implants in dogs

  • Ji-Won Jeon;Kyu-Won Kang;Woo-Keyoung Kim;Sook Yang;Byung-Jae Kang
    • Journal of Veterinary Science
    • /
    • v.25 no.1
    • /
    • pp.2.1-2.14
    • /
    • 2024
  • Background: Sufficient surgical resection is necessary for effective tumor control, but is usually limited for vertebral tumors, especially in the cervical spine in small animal neurosurgery. Objective: To evaluate the primary stability and safety of customized three-dimensional (3D)-printed implants for cervical spine reconstruction after total vertebrectomy. Methods: Customized guides and implants were designed based on computed tomography (CT) imaging of five beagle cadavers and were 3D-printed. They were used to reconstruct C5 after total vertebrectomy. Postoperative CT images were obtained to evaluate the safety and accuracy of screw positioning. After harvesting 10 vertebral specimens (C3-C7) from intact (group A) and implanted spines (group B), implant stability was analyzed using a 4-point bending test comparing with groups A and C (reconstituted with plate and pins/polymethylmethacrylate after testing in Group A). Results: All customized implants were applied without gross neurovascular damage. In addition, 90% of the screws were in a safe area, with 7.5% in grade 1 (< 1.3 mm) and 2.5% in grade 2 (> 1.3 mm). The mean entry point and angular deviations were 0.81 ± 0.43 mm and 6.50 ± 5.11°, respectively. Groups B and C significantly decreased the range of motion (ROM) in C3-C7 compared with intact spines (p = 0.033, and 0.018). Both groups reduced overall ROM and neutral zone in C4-C6, but only group B showed significance (p = 0.005, and 0.027). Conclusion: Customized 3D-printed implants could safely and accurately replace a cervical vertebra in dog cadavers while providing primary stability.

A Case Report of Axillary Hibernoma: US, CT, MR, and Histopathologic Findings (액와부 갈색지방종의 증례 보고: 초음파, 컴퓨터단층촬영, 자기공명영상, 병리 소견)

  • Ji Yeon Park;Seong Yoon Yi;Ji Young Lee;Tae Jung Kwon
    • Journal of the Korean Society of Radiology
    • /
    • v.83 no.2
    • /
    • pp.439-443
    • /
    • 2022
  • Hibernoma is a rare benign tumor of brown adipose tissue. Herein, we report a case of axillary hibernoma in a 53-year-old female and discuss the various radiologic findings. The US revealed a 4.5-cm well-defined oval heterogenous hyperechoic mass in the right axilla with anterior displacement of the axillary vessels. Non-enhanced chest CT showed a 5.0-cm well defined, oval, and low-attenuated mass. MRI demonstrated a 5.5-cm mass with heterogeneous intermediate-to-high signal intensity on T1-and T2-weighted images and irregular enhancement at the peripheral portion. The patient underwent an US-guided core needle biopsy and the final diagnosis was hibernoma.

Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction

  • Kyungsoo Bae;Dong Yul Oh;Il Dong Yun;Kyung Nyeo Jeon
    • Korean Journal of Radiology
    • /
    • v.23 no.1
    • /
    • pp.139-149
    • /
    • 2022
  • Objective: To compare the effects of bone suppression imaging using deep learning (BSp-DL) based on a generative adversarial network (GAN) and bone subtraction imaging using a dual energy technique (BSt-DE) on radiologists' performance for pulmonary nodule detection on chest radiographs (CXRs). Materials and Methods: A total of 111 adults, including 49 patients with 83 pulmonary nodules, who underwent both CXR using the dual energy technique and chest CT, were enrolled. Using CT as a reference, two independent radiologists evaluated CXR images for the presence or absence of pulmonary nodules in three reading sessions (standard CXR, BSt-DE CXR, and BSp-DL CXR). Person-wise and nodule-wise performances were assessed using receiver-operating characteristic (ROC) and alternative free-response ROC (AFROC) curve analyses, respectively. Subgroup analyses based on nodule size, location, and the presence of overlapping bones were performed. Results: BSt-DE with an area under the AFROC curve (AUAFROC) of 0.996 and 0.976 for readers 1 and 2, respectively, and BSp-DL with AUAFROC of 0.981 and 0.958, respectively, showed better nodule-wise performance than standard CXR (AUAFROC of 0.907 and 0.808, respectively; p ≤ 0.005). In the person-wise analysis, BSp-DL with an area under the ROC curve (AUROC) of 0.984 and 0.931 for readers 1 and 2, respectively, showed better performance than standard CXR (AUROC of 0.915 and 0.798, respectively; p ≤ 0.011) and comparable performance to BSt-DE (AUROC of 0.988 and 0.974; p ≥ 0.064). BSt-DE and BSp-DL were superior to standard CXR for detecting nodules overlapping with bones (p < 0.017) or in the upper/middle lung zone (p < 0.017). BSt-DE was superior (p < 0.017) to BSp-DL in detecting peripheral and sub-centimeter nodules. Conclusion: BSp-DL (GAN-based bone suppression) showed comparable performance to BSt-DE and can improve radiologists' performance in detecting pulmonary nodules on CXRs. Nevertheless, for better delineation of small and peripheral nodules, further technical improvements are required.

Influence of Heart Rate and Innovative Motion-Correction Algorithm on Coronary Artery Image Quality and Measurement Accuracy Using 256-Detector Row Computed Tomography Scanner: Phantom Study

  • Jeong Bin Park;Yeon Joo Jeong;Geewon Lee;Nam Kyung Lee;Jin You Kim;Ji Won Lee
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Objective: To investigate the efficacy of motion-correction algorithm (MCA) in improving coronary artery image quality and measurement accuracy using an anthropomorphic dynamic heart phantom and 256-detector row computed tomography (CT) scanner. Materials and Methods: An anthropomorphic dynamic heart phantom was scanned under a static condition and under heart rate (HR) simulation of 50-120 beats per minute (bpm), and the obtained images were reconstructed using conventional algorithm (CA) and MCA. We compared the subjective image quality of coronary arteries using a four-point scale (1, excellent; 2, good; 3, fair; 4, poor) and measurement accuracy using measurement errors of the minimal luminal diameter (MLD) and minimal luminal area (MLA). Results: Compared with CA, MCA significantly improved the subjective image quality at HRs of 110 bpm (1.3 ± 0.3 vs. 1.9 ± 0.8, p = 0.003) and 120 bpm (1.7 ± 0.7 vs. 2.3 ± 0.6, p = 0.006). The measurement error of MLD significantly decreased on using MCA at 110 bpm (11.7 ± 5.9% vs. 18.4 ± 9.4%, p = 0.013) and 120 bpm (10.0 ± 7.3% vs. 25.0 ± 16.5%, p = 0.013). The measurement error of the MLA was also reduced using MCA at 110 bpm (19.2 ± 28.1% vs. 26.4 ± 21.6%, p = 0.028) and 120 bpm (17.9 ± 17.7% vs. 34.8 ± 19.6%, p = 0.018). Conclusion: Motion-correction algorithm can improve the coronary artery image quality and measurement accuracy at a high HR using an anthropomorphic dynamic heart phantom and 256-detector row CT scanner.