• Title/Summary/Keyword: CT모델

Search Result 373, Processing Time 0.021 seconds

Stress Patterns in the Reconstructed Double Bundles of the Anterior Cruciate Ligament in Response to an Anterior Tibial Load and Rotatory Load: an Analysis using a 3-Dimensional Finite Element Model (삼차원 유한 요소 모델을 이용한 전방십자인대 이중다발 재건술 후 전방 전위 및 회전 부하에 따른 이식건 응력 양상 분석)

  • Seo, Young-Jin;Song, Si Young;Ahn, Jung Tae;Kim, Yoon-Sang;Ko, Jun Ho;Jang, Seong-Wook;Yoo, Yon-Sik
    • Journal of the Korean Arthroscopy Society
    • /
    • v.16 no.2
    • /
    • pp.160-166
    • /
    • 2012
  • Purpose: The aim of this study was to determine the patterns of the stress distribution within the reconstructed anterior cruciate ligament (ACL) double bundles in response to an anterior tibial load and rotatory load at $45^{\circ}$ flexed knee model by use of a 3-dimensional finite element analysis (FEM). Materials and Methods: The $0^{\circ}$ and $45^{\circ}$ flexed 3-D knee model were reconstructed based on the high resolution computed tomography (CT) images from the right knee of a healthy male subject. To simulate double bundle ACL reconstruction, in $0^{\circ}$ analytic model, four 7 mm diameter tunnels were created at the center of each anteromedial (AM) and posterolateral (PL) footprints on the femur and tibia. The grafts were inserted into the corresponding bone tunnels and then reconstructed knee model was flexed to $45^{\circ}$. As a next step, the 5 mm anterior tibial load and internal rotational load of $10^{\circ}$ were applied on the final Computer aided design (CAD) model. And then stress patterns of each bundle were assessed using a finite element analysis. Results: In response to the 5 mm of anterior tibial load, the AM bundle showed increased stresses around the tibial and femoral attachment sites; especially in the anterior aspect of the bundle. In the PL bundle, the highest stress concentration was also noticed on the anterior aspect of the bundle. Under $10^{\circ}$ internal rotational load, the stress concentration was predominant around the anterior aspect of the tibial attachment site within the AM bundle. The PL bundle also showed highest stress concentration on the anterior aspect of the bundle. Conclusion: Although the stress patterns were not identical among the AM and PL bundle, there were common trends in the stress distribution. The stress concentration was predominant on the anterior aspect of both bundles in response to the anterior tibial load and rotatory load.

  • PDF

Evaluation of the accuracy of two different surgical guides in dental implantology: stereolithography fabricated vs. positioning device fabricated surgical guides (제작방법에 따른 임플란트 수술 가이드의 정확성비교: stereolithography와 positioning device로 제작한 수술 가이드)

  • Kwon, Chang-Ryeol;Choi, Byung-Ho;Jeong, Seung-Mi;Joo, Sang-Dong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Purpose: Recently implant surgical guides were used for accurate and atraumatic operation. In this study, the accuracy of two different types of surgical guides, positioning device fabricated and stereolithography fabricated surgical guides, were evaluated in four different types of tooth loss models. Materials and methods: Surgical guides were fabricated with stereolithography and positioning device respectively. Implants were placed on 40 models using the two different types of surgical guides. The fitness of the surgical guides was evaluated by measuring the gap between the surgical guide and the model. The accuracy of surgical guide was evaluated on a pre- and post-surgical CT image fusion. Results: The gap between the surgical guide and the model was $1.4{\pm}0.3mm$ and $0.4{\pm}0.3mm$ for the stereolithography and positioning device surgical guide, respectively. The stereolithography showed mesiodistal angular deviation of $3.9{\pm}1.6^{\circ}$, buccolingual angular deviation of $2.7{\pm}1.5^{\circ}$ and vertical deviation of $1.9{\pm}0.9mm$, whereas the positioning device showed mesiodistal angular deviation of $0.7{\pm}0.3^{\circ}$, buccolingual angular deviation of $0.3{\pm}0.2^{\circ}$ and vertical deviation of $0.4{\pm}0.2mm$. The differences were statistically significant between the two groups (P<.05). Conclusion: The laboratory fabricated surgical guides using a positioning device allow implant placement more accurately than the stereolithography surgical guides in dental clinic.

Evaluation of Planning Dose Accuracy in Case of Radiation Treatment on Inhomogeneous Organ Structure (불균질부 방사선치료 시 계획 선량의 정확성 평가)

  • Kim, Chan Yong;Lee, Jae Hee;Kwak, Yong Kook;Ha, Min Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.25 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • Purpose: We are to find out the difference of calculated dose of treatment planning system (TPS) and measured dose in case of inhomogeneous organ structure. Materials and Methods: Inhomogeneous phantom is made with solid water phantom and cork plate. CT image of inhomogeneous phantom is acquired. Treatment plan is made with TPS (Pinnacle3 9.2. Royal Philips Electronics, Netherlands) and calculated dose of point of interest is acquired. Treatment plan was delivered in the inhomogeneous phantom by ARTISTE (Siemens AG, Germany) measured dose of each point of interest is obtained with Gafchromic EBT2 film (International Specialty Products, US) in the gap between solid water phantom or cork plate. To simulate lung cancer radiation treatment, artificial tumor target of paraffin is inserted in the cork volume of inhomogeneous phantom. Calculated dose and measured dose are acquired as above. Results: In case of inhomogeneous phantom experiment, dose difference of calculated dose and measured dose is about -8.5% at solid water phantom-cork gap and about -7% lower in measured dose at cork-solid water phantom gap. In case of inhomogeneous phantom inserted paraffin target experiment, dose difference is about 5% lower in measured dose at cork-paraffin gap. There is no significant difference at same material gap in both experiments. Conclusion: Radiation dose at the gap between two organs with different electron density is significantly lower than calculated dose with TPS. Therefore, we must be aware of dose calculation error in TPS and great care is suggested in case of radiation treatment planning on inhomogeneous organ structure.

  • PDF

Effect of Inhomogeneity correction for lung volume model in TPS (Lnug Volume을 모델로 한 방사선치료계획 시 불균질 조직 보정에 따른 효과)

  • Chung SeYoung;Lee SangRok;Kim YoungBum;Kwon YoungHo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • Introduction : The phantom that includes high density materials such as steel was custom-made to fix lung and bone in order to evaluation inhomogeneity correction at the time of conducting radiation therapy to treat lung cancer. Using this, values resulting from the inhomogeneous correction algorithm are compared on the 2 and 3 dimensional radiation therapy planning systems. Moreover, change in dose calculation was evaluated according to inhomogeneous by comparing with the actual measurement. Materials and Methods : As for the image acquisition, inhomogeneous correction phantom(Pig's vertebra, steel(8.21g/cm3), cork(0.23 g/cm3)) that was custom-made and the CT(Volume zoom, Siemens, Germany) were used. As for the radiation therapy planning system, Marks Plan(2D) and XiO(CMS, USA, 3D) were used. To compare with the measurement value, linear accelerator(CL/1800, Varian, USA) and ion chamber were used. Image, obtained from the CT was used to obtain point dose and dose distribution from the region of interest (ROI) while on the radiation therapy planning device. After measurement was conducted under the same conditions, value on the treatment planning device and measured value were subjected to comparison and analysis. And difference between the resulting for the evaluation on the use (or non-use) of inhomogeneity correction algorithm, and diverse inhomogeneity correction algorithm that is included in the radiation therapy planning device was compared as well. Results : As result of comparing the results of measurement value on the region of interest within the inhomogeneity correction phantom and the value that resulted from the homogeneous and inhomogeneous correction, gained from the therapy planning device, margin of error of the measurement value and inhomogeneous correction value at the location 1 of the lung showed $0.8\%$ on 2D and $0.5\%$ on 3D. Margin of error of the measurement value and inhomogeneous correction value at the location 1 of the steel showed $12\%$ on 2D and $5\%$ on 3D, however, it is possible to see that the value that is not correction and the margin of error of the measurement value stand at $16\%$ and $14\%$, respectively. Moreover, values of the 3D showed lower margin of error compared to 2D. Conclusion : Revision according to the density of tissue must be executed during radiation therapy planning. To ensure a more accurate planning, use of 3D planning system is recommended more so than the 2D Planning system to ensure a more accurate revision on the therapy plan. Moreover, 3D Planning system needs to select and use the most accurate and appropriate inhomogeneous correction algorithm through actual measurement. In addition, comparison and analysis through TLD or film dosimetry are needed.

  • PDF

Quality Management of Radionuclide Activity Meter using Ge-68/Ga-68 Rod Sources (Ge-68/Ga-68 Rod Sources을 이용한 방사능측정기의 정도관리)

  • Jung, Seung Hwan;Jin, Gye Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.575-582
    • /
    • 2018
  • This article compared accuracy of 5 types of radionuclide activity meters that are being used in medical institutions and proposed the correction factor for each radionuclide activity meters type, using Ge-68/Ga-68 radiation sources for scanner setting, regular scanner correction, attenuation correction, and normalization. The calibration constant between baseline values and measured values by CRC-15R, CRC-15 PET, CRC-712M, CRC-15 Beta, and CRC-25PET was 0.99999(P<0.0001), which showed very high linearity. In the accuracy test, CRC-15R, CRC-15 PET, CRC-712M, CRC-15 Beta, and CRC-25PET model showed -3.232%, -1.342%, -2.815%, -2.913%, and -3.089% respectively.

Effective Reconstruction of Extensive Orbital Floor Fractures Using Rapid Prototyping Model (신속 조형 모델을 이용한 안와바닥 골절 정복술)

  • Kim, Hye-Young;Oh, Deuk-Young;Lee, Woo-Sung;Moon, Suk-Ho;Seo, Je-Won;Lee, Jung-Ho;Rhie, Jong-Won;Ahn, Sang-Tae
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.633-638
    • /
    • 2010
  • Purpose: Orbital bone is one of the most complex bones in the human body. When the patient has a fracture of the orbital bone, it is difficult for the surgeon to restore the fractured orbital bone to normal anatomic curvature because the orbital bone has complex curvature. We developed a rapid prototyping model based on a mirror image of the patient's 3D-CT (3 dimensional computed tomography) for accurate reduction of the fractured orbital wall. Methods: A total of 7 cases of large orbital wall fracture recieved absorbable plate prefabrication using rapid prototyping model during surgery and had the manufactured plate inserted in the fracture site. Results: There was no significant postoperative complication. One patient had persistent diplopia, but it was resolved completely after 5 weeks. Enophthalmos was improved in all patients. Conclusion: With long term follow-up, this new method of orbital wall reduction proved to be accurate, efficient and cost-effective, and we recommend this method for difficult large orbital wall fracture operations.

Development of Multi-Body Dynamics Simulator for Bio-Mimetic Motion in Lizard Robot Design (도마뱀 로봇 설계를 위한 생체운동 모사 다물체 동역학 시뮬레이터 개발)

  • Park, Yong-Ik;Seo, Bong Cheol;Kim, Sung-Soo;Shin, Hocheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.6
    • /
    • pp.585-592
    • /
    • 2014
  • In this study, a multibody simulator was developed to analyze the bio-mimetic motion of a lizard robot design. A RecurDyn multibody dynamics model of a lizard was created using a micro-computerized tomography scan and motion capture data. The bio-mimetic motion simulator consisted of a trajectory generator, an inverse kinematics module, and an inverse dynamics module, which were used for various walking motion analyses of the developed lizard model. The trajectory generation module produces spinal movements and gait trajectories based on the lizard's speed. Using the joint angle history from an inverse kinematic analysis, an inverse dynamic analysis can be carried out, and the required joint torques can be obtained for the lizard robot design. In order to investigate the effectiveness of the developed simulator, the required joint torques of the model were calculated using the simulator.

Effects of Sayeok-tang on Papain-Induced Osteoarthritis in Mice (Papain으로 유도된 골관절염 생쥐 모델에서 사역탕(四逆湯)의 항골관절염 효능에 관한 연구)

  • Kung, Shyang En;Oh, Min Seok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.212-224
    • /
    • 2013
  • This study intends to clarify how Sayeok-tang(here in after reffered to SYT) affect C57BL/10 mice whose osteoarthritis was induced by papain. Osteoarthritis was induced by injecting papain in the knee joint of 3 groups(n=6) of mice. Normal group was non-treatment group and was not injected papain, whereas control mice were orally administered with $200{\mu}{\ell}$ of physiological saline. Positive comparison group was medicated with 100 mg/kg of Joins$^{(R)}$ mixed with $200{\mu}{\ell}$ of physiological saline. Experimental group was medicated with 400 mg/kg of SYT mixed with $200{\mu}{\ell}$ of physiological saline. Both Positive and experimental comparison groups were orally medicated once per day for 4 weeks. After the experiment, the functions of liver and kidney, inflammation cytokine values within serum, degree of revelation for inflammation cytokine genes, immune cells within blood, metabolism of arachidonic acid and amount of cartilage were measured and histopathological changes in the knee joint structures were observed. As results, SYT had no significant effect on the liver and kidney functions. Interleukin-$1{\beta}$(IL-$1{\beta}$), interleukin-6(IL-6), monocyte chemo attractant protein-1(MCP-1) and tumor necrosis factor-${\alpha}$(TNF-${\alpha}$) were significantly decreased. Inflammation cytokines in joints were all significantly decreased. Prostaglandin $E_2(PGE_2)$, thromboxane $B_2(TXB_2)$ were significantly decreased. Destruction of cartilage on micro computed tomography(CT)-arthrography was meaningfully decreased. In terms of histopathology, infiltration of inflammation, proliferation of synovial membrane, subsidence of cartilage and bone due to penetration of excessive formation of synovial cell and destruction of cartilage were small. Based on all results mentioned above, Sayeok-tang(SYT) is believed to be meaningful for suppressing the progress of osteoarthritis and its treatments because of its anti-inflammatory effects and alleviation of pain with histopathological effective efficacy.

The Effects of Whole Body Vibration in the Aspect of Reducing Abdominal Adipose Tissue in High-Fat Diet Mice Model (고지방 식이 섭취 소동물 모델을 활용한 전신진동 자극의 복부 지방 감소 효능 평가)

  • Hwang, Donghyun;Kim, Seohyun;Lee, Hana;lee, Sangyeob;Seo, Donghyun;Cho, Seungkwan;Chen, Seulgi;Han, Taeyoung;Kim, Han Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.49-55
    • /
    • 2017
  • The prevalence of obesity has noticeably increased worldwide over several decades with various complication. Even though anti-obesity drug treatments have been spotlighted by resulting in effective mean weight losses, its adverse effects cannot be overlooked. Thus, this study aimed to evaluate the effects of multi-frequency whole body vibration, one of the mechanical stimulus, as a countermeasure against obesity. Thirty-two-6-week-old C57BL/6J male mice were equally assigned to four groups: the Control group (CON, n = 8), the Sham group (Sham, n = 8), the sham with single frequency whole body vibration (S+V, n = 8), and the sham with multi frequency whole body vibration (S+MV, n = 8). After 4 weeks, morphologic changes in the adipose tissue were evaluated from three-dimensional images using in vivo micro-computed tomography. At 4 weeks, the volume of the abdominal adipose tissue, which had the highest value in Sham group, noticeably reduced in S+MV group compared to it in S+V group. These results implied that the accumulation of abdominal adipose tissue can be effectively reduced through applying multi-frequency whole body vibration.

Web based 3-D Medical Image Visualization System on the PC (웹 기반 3차원 의료모델 시각화 시스템)

  • Kim, Nam-Kug;Lee, Dong-Hyuk;Kim, Jong-Hyo;Kang, Heung-Sik;Min, Byung-Goo;Kim, Young-Ho
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.201-205
    • /
    • 1997
  • With the recent advance of Web and its associated technologies, information sharing on distribute computing environments has gained a great amount of attention from many researchers in many application areas, such as medicine, engineering, and business. One basic requirement of distributed medical consultation systems is that geographically dispersed, disparate participants are allowed to exchange information readily with each other. Such software also needs to be supported on a broad range of computer platforms to increase the software's accessibility. In this paper, the development of world-wide-web based medical consultation system or radiology imaging is addressed to provide the platform independence and great accessibility. The system supports sharing of 3-dimensional objects. We use VRML (Virtual Reality Modeling Language), which is the de-facto standard in 3-D modeling on the Web. 3-D objects are reconstructed from CT or MRI volume data using a VRML format, which can be viewed and manipulated easily in Web-browsers with a VRML plug-in. A Marching cubes method is used in the transformation of scanned volume data set to polygonal surfaces of VRML. A decimation algorithm is adopted to reduce the number of meshes in the resulting VRML file. 3-D volume data are often very large-sized, and hence loading the data on PC level computers requires a significant reduction of the size of the data, while minimizing the loss of the original shape information. This is also important to decrease network delays. A prototype system has been implemented (http://netopia.snu.ac.kr/-cyber/). and several sessions of experiments are carried out.

  • PDF