• Title/Summary/Keyword: CST

Search Result 973, Processing Time 0.02 seconds

Investigation of Pellet-Clad Mechanical Interaction in Failed Spent PWR Fuel

  • Jung, Yang Hong;Baik, Seung Je
    • Corrosion Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.175-181
    • /
    • 2019
  • A failed spent fuel rod with 53,000 MWd/tU from a nuclear power plant was characterized, and the fission products and oxygen layer in the pellet-clad mechanical interaction region were observed using an EPMA (Electron Probe Micro-Analyzer). A sound fuel rod burned under similar conditions was used to compare and analyze, the results of the failed fuel rod. In the failed fuel rod, the oxide layer represented $10{\mu}m$ of the boundary of the cladding, and $35{\mu}m$ of the region outside the cladding. By comparison, in the sound fuel rod, the oxide layer was $8{\mu}m$, observed in the cladding boundary region. The cladding inner surface corrosion and the resulting fuel-cladding bonding were investigated using an EPMA. Zirconium existed in the bonding layer of the (U, Zr)O compound beyond the pellet cladding interaction gap of $20{\mu}m$, and composition of UZr2O3 was observed in the failed fuel rod. This paper presents the results of the EPMA examination of a spent fuel specimen, and a technique to analyze fission products in the pellet-clad mechanical interaction region.

Effects of Casting Method and Rolling on the Corrosion Behaviors of Pb Alloys for a Lead Acid Battery (주조 방식 및 압연에 따른 연축전지용 납 합금 기판의 부식 특성)

  • Oh, KkochNim;Lee, Kyu Hyuk;Jang, HeeJin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • In this study, we examined corrosion behaviors of two types of Pb alloys for a lead acid battery comparatively. One containing 6.6 wt% Sn, 36 mg/kg Bi, and 612.4 mg/kg Ca was prepared by twin-roll continuous casting. The other containing 5.2 wt% Sn, 30.5 mg/kg Ag, and 557 mg/kg Ca was made by twin-belt continuous casting. Potentiodynamic polarization tests were performed to evaluate corrosion resistance. Cyclic voltammetry was done to examine oxidation and reduction reactions occurring on the surface of each alloy in 4.8 M H2SO4 solution. Electrochemical test results implied that the Pb alloy prepared with the twin-belt casting method was less stable than that cast with the twin-roll method. Such results might be due to precipitations formed during the casting process. Rolling did not appear to affect the corrosion behavior of the twin-roll samples with Ag < 10 mg/kg, while it reduced the anodic reaction of Ag on the surface of the twin-belt sample with 30.5 mg/kg Ag.

Electrochemical Corrosion Damage Characteristics of Austenite Stainless Steel and Nickel Alloy with Various Seawater Concentrations (오스테나이트계 스테인리스강과 니켈합금의 해수 농도 변화에 따른 전기화학적 부식 손상 특성)

  • Heo, Ho-Seong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.281-288
    • /
    • 2021
  • Due to advancement of the industry, operation of a device in a harsh environment is increasing. Especially, the marine environment contains Cl- ions which causes localized corrosion such as pitting and crevice corrosion of stainless steel and various metals. In this study, electrochemical corrosion behaviors of austenitic stainless steel (STS 316L) and nickel alloy (Inconel 600) with different seawater concentrations (fresh water, seawater, mixed water) were investigated. The STS 316L and Inconel 600 were etched in 10% oxalic acid and composed of an austenitic phase. Results of Tafel analysis in seawater showed that STS 316L and Inconel 600 presented the highest corrosion current densities of 7.75 × 10-4 mA/cm2 and 1.11 × 10-4 mA/cm2 and the most negative pitting potentials of 0.94 V and 1.06 V, respectively. The maximum damage depths and surface damage ratio by pitting corrosion increased with chloride concentration. The STS 316L had higher PREN than Inconel 600. However, the surface damage and weight loss of Inconel 600 were superior to STS 316L. It was difficult to compare the pitting resistance of STS 316L based on Fe and Inconel 600 based on Ni with PREN simply.

Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance (내식성 향상을 위한 기능성 타이타늄 표면 개질)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Effect of ε-carbide (Fe2.4C) on Corrosion and Hydrogen Diffusion Behaviors of Automotive Ultrahigh-Strength Steel Sheet (초고강도급 자동차용 강재 내 ε-carbide (Fe2.4C)가 부식 및 수소확산거동에 미치는 영향)

  • Park, Jin-seong;Yun, Duck Bin;Seong, Hwan Goo;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.295-307
    • /
    • 2021
  • Effects of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of ultra-strong steel sheets for automotive application were investigated using a number of experimental and analytical methods. Results of this study showed that the type of iron carbide precipitated during tempering treatments conducted at below A1 temperatures had a significant influence on corrosion kinetics. Compared to a steel sample with cementite (Fe3C), a steel sample with ε-carbide (Fe2.4C) showed higher corrosion resistance during a long-term exposure to a neutral aqueous solution. In addition, the diffusion kinetics of hydrogen atoms formed by electrochemical corrosion reactions in the steel matrix with ε-carbide were slower than the steel matrix with cementite because of a comparatively higher binding energy of hydrogen with ε-carbide. These results suggest that designing steels with fine ε-carbide distributed uniformly throughout the matrix can be an effective technical strategy to ensure high resistance to hydrogen embrittlement induced by aqueous corrosion.

Effect of Temperature on Electrochemical Characteristics of Stainless Steel in Green Death Solution Using Cyclic Potentiodynamic Polarization Test (순환동전위 분극실험을 이용한 스테인리스강의 그린데스용액에서 전기화학적 특성에 미치는 온도의 영향)

  • Hwang, Hyun-Kyu;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.266-280
    • /
    • 2021
  • Since 2020, the International Maritime Organization (IMO) has updated regulations on the sulfur content to be less than 0.5% in exhaust gas emitted from ships. Accordingly, the exhaust gas post-treatment device for ships, which is SOx/NOx reduction technology, was introduced. However, the exhaust gas post-treatment device is suffering corrosion because of the harsh corrosive environment formed by sulfate and chlorine oxide through the desulfurization process. In this investigation, cyclic potentiodynamic polarization (CPDP) experiment for UNS S31603 and UNS N08367 was performed in a green death solution that simulates the environment of a desulfurization device. The corrosion rate of UNS S31603 at the highest temperature was about 3 times higher than that of UNS N83067. Also, electron microscope scan revealed corrosion type UNS N83067 presents intergranular corrosion tendency. On the other hand, UNS S31603 was observed as general corrosion. The α values of UNS N08367 at 30 ℃ and 60 ℃ were higher than those of UNS S31603, thus UNS N08367 is considered to have a higher local damage tendency. Whereas, since the α value of UNS S31603 at 90 ℃ is larger than that of UNS N08367, UNS S31603 is considered to have a higher local damage trend.

Effects of Adding Mg to AlSi Coating for Hot Stamping Steel (자동차용 핫스탬핑 AlSi 도금중 Mg 첨가효과)

  • Yang, Wonseog;Lee, Jeamin;Kim, Changkyu;Ahn, Seungho;Castaneda, Homero
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.196-203
    • /
    • 2021
  • To improve corrosion resistance and reduce the hydrogen uptake of 22MnB5, up to 5% Mg was added to the AlSi coating of 22MnB5. After hot-stamping and electrocoating were done on the metallic-coated specimen, the surface characteristics of the steel, hydrogen uptake content, and corrosion resistance were examined by transmittance electron microscopy, thermal desorption spectrometry, cyclic corrosion testing, and electrochemical impedance spectroscopy. Mg was investigated as MgO on the surface layer after hot-stamping while it existed as Mg2Si before hot-stamping. The total hydrogen content of 22MnB5 was decreased along with the Mg content. However, there was no difference at 0.2 wt% or more. When a small amount of Mg was added, the coating corrosion resistance was decreased, but when it was added at around 1.0 wt%, the greatest corrosion resistance increase was seen. However, when 3 wt% or more was added excessively, the corrosion resistance was decreased. MgO on the surface was considered to suppress H uptake by the AlSi melting solution and increase the barrier effect of the coating.

Failure Evaluation Plan of a Reactor Internal Components of a Decommissioned Plant

  • Hwang, Seong Sik;Kim, Sung Woo;Choi, Min Jae;Cho, Sung Hwan;Kim, Dong Jin
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.189-195
    • /
    • 2021
  • A technology for designing and licensing a dedicated radiation shielding facility needs to be developed for safe and efficient operation an R&D center. Technology development is important for smooth operation of such facilities. Causes of damage to internal structures (such as baffle former bolt (BFB) of pressurized water reactor) of a nuclear power reactor should be analyzed along with prevention and countermeasures for similar cases of other plants. It is important to develop technologies that can comprehensively analyze various characteristics of internal structures of long term operated reactors. In high-temperature, high-pressure operating environment of nuclear power plants, cases of BFB cracks caused by irradiated assisted stress corrosion cracks (IASCC) have been reported overseas. The integrity of a reactor's internal structure has emerged as an important issue. Identifying the cause of the defect is requested by the Korean regulatory agency. It is also important to secure a foundation for testing technology to demonstrate the operating environment for medium-level irradiated testing materials. The demonstration testing facility can be used for research on material utilization of the plant, which might have highest fluence on the internal structure of a reactor globally.

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

Anti-Corrosion Performance and Applications of PosMAC® Steel

  • Sohn, Il-Ryoung;Kim, Tae-Chul;Ju, Gwang-Il;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.7-14
    • /
    • 2021
  • PosMAC® is a brand of Zn-Mg-Al hot-dip coated steel sheet developed by POSCO. PosMAC® can form dense surface oxides in corrosive environments, providing advanced corrosion resistance compared to traditional Zn coatings such as GI and GA. PosMAC® 3.0 is available for construction and solar energy systems in severe outdoor environments. PosMAC®1.5 has better surface quality. It is suitable for automotive and home appliances. Compared to GI and GA, PosMAC® shows significantly less weight reduction due to corrosion, even with a lower coating thickness. Thin coating of PosMAC® provides advanced quality and productivity in arc welding applications due to its less generation of Zn fume and spatters. In repeated friction tests, PosMAC® showed lower surface friction coefficient than conventional coatings such as GA, GI, and lubricant film coated GA. Industrial demand for PosMAC® steel is expected to increase in the near future due to benefits of anti-corrosion and robust application performance of PosMAC® steel.