• 제목/요약/키워드: CSIR

검색결과 217건 처리시간 0.022초

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.

A feruloyl esterase derived from a leachate metagenome library

  • Rashamuse, Konanani;Sanyika, Walter;Ronneburg, Tina;Brady, Dean
    • BMB Reports
    • /
    • 제45권1호
    • /
    • pp.14-19
    • /
    • 2012
  • A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid poly-peptide, encoding a 55 kDa pre-protein. The Fae6 primary structure contained the G-E-S-A-G sequence, which corresponds well with a typical catalytic serine sequence motif (G-x-S-x-G). The fae6 gene was successfully over-expressed in E. coli and the recombinant protein was purified to 8.4 fold enrichment with 17% recovery. The $K_M$ data showed Fae6 has a high affinity to methyl sinapate while thermostability data indicated that fae6 was thermolabile with a half life ($T_{1/2}$) < 30 min at $50^{\circ}C$. High affinity for Fae6 against methyl sinapate, methyl ferulate and ethyl ferulate suggest that the enzyme can be useful in hydrolyzing ferulated polysaccharides in a biorefinery process.

Probabilistic free vibration analysis of Goland wing

  • Kumar, Sandeep;Onkar, Amit Kumar;Manjuprasad, M.
    • International Journal of Aerospace System Engineering
    • /
    • 제6권2호
    • /
    • pp.1-10
    • /
    • 2019
  • In this paper, the probabilistic free vibration analysis of a geometrically coupled cantilever wing with uncertain material properties is carried out using stochastic finite element (SFEM) based on first order perturbation technique. Here, both stiffness and damping of the system are considered as random parameters. The bending and torsional rigidities are assumed as spatially varying second order Gaussian random fields and represented by Karhunen Loeve (K-L) expansion. Here, the expected value, standard deviation, and probability distribution of random natural frequencies and damping ratios are computed. The results obtained from the present approach are also compared with Monte Carlo simulations (MCS). The results show that the uncertain bending rigidity has more influence on the damping ratio and frequency of modes 1 and 3 while uncertain torsional rigidity has more influence on the damping ratio and frequency of modes 2 and 3.

Carbon-allotropes: synthesis methods, applications and future perspectives

  • Karthik, P.S.;Himaja, A.L.;Singh, Surya Prakash
    • Carbon letters
    • /
    • 제15권4호
    • /
    • pp.219-237
    • /
    • 2014
  • The element carbon has been used as a source of energy for the past few hundred years, and now in this era of technology, carbon has played a significant and very prominent role in almost all fields of science and technology. So as an honour to this marvellous element, we humans should know about its various forms of existence. In this review article, we shed light on all possible carbon-allotropes; similarities in their synthesis techniques and the starting materials; their wide range of possible availability; and finally, future perspectives and applications. A brief introduction is given on the types, structures, and shapes of the allotropes of carbon for a better understanding.

XFEM for fatigue and fracture analysis of cracked stiffened panels

  • Kumar, M.R. Nanda;Murthy, A. Ramachandra;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.65-89
    • /
    • 2016
  • This paper presents the development of methodologies using Extended Finite Element Method (XFEM) for cracked unstiffened and concentric stiffened panels subjected to constant amplitude tensile fatigue loading. XFEM formulations such as level set representation of crack, element stiffness matrix formulation and numerical integration are presented and implemented in MATLAB software. Stiffeners of the stiffened panels are modelled using truss elements such that nodes of the panel and nodes of the stiffener coincide. Stress Intensity Factor (SIF) is computed from the solutions of XFEM using domain form of interaction integral. Paris's crack growth law is used to compute the number of fatigue cycles up to failure. Numerical investigations are carried out to model the crack growth, estimate the remaining life and generate damage tolerant curves. From the studies, it is observed that (i) there is a considerable increase in fatigue life of stiffened panels compared to unstiffened panels and (ii) as the external applied stress is decreasing number of fatigue life cycles taken by the component is increasing.

Applied linear and nonlinear statistical models for evaluating strength of Geopolymer concrete

  • Prem, Prabhat Ranjan;Thirumalaiselvi, A.;Verma, Mohit
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.7-17
    • /
    • 2019
  • The complex phenomenon of the bond formation in geopolymer is not well understood and therefore, difficult to model. This paper present applied statistical models for evaluating the compressive strength of geopolymer. The applied statistical models studied are divided into three different categories - linear regression [least absolute shrinkage and selection operator (LASSO) and elastic net], tree regression [decision and bagging tree] and kernel methods (support vector regression (SVR), kernel ridge regression (KRR), Gaussian process regression (GPR), relevance vector machine (RVM)]. The performance of the methods is compared in terms of error indices, computational effort, convergence and residuals. Based on the present study, kernel based methods (GPR and KRR) are recommended for evaluating compressive strength of Geopolymer concrete.

Damage progression study in fibre reinforced concrete using acoustic emission technique

  • Banjara, Nawal Kishor;Sasmal, Saptarshi;Srinivas, V.
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.173-184
    • /
    • 2019
  • The main objective of this study is to evaluate the true fracture energy and monitor the damage progression in steel fibre reinforced concrete (SFRC) specimens using acoustic emission (AE) features. Four point bending test is carried out using pre-notched plain and fibre reinforced (0.5% and 1% volume fraction) - concrete under monotonic loading. AE sensors are affixed at different locations of the specimens and AE parameters such as rise time, AE energy, hits, counts, amplitude and duration etc. are obtained. Using the captured and processed AE event data, fracture process zone is identified and the true fracture energy is evaluated. The AE data is also employed for tracing the damage progression in plain and fibre reinforced concrete, using both parametric- and signal- based techniques. Hilbert - Huang transform (HHT) is used in signal based processing for evaluating instantaneous frequency of the acoustic events. It is found that the appropriately processed and carefully analyzed acoustic data is capable of providing vital information on progression of damage on different types of concrete.

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Explicit incremental matrices for the postbuckling analysis of thin plates with small initial curvature

  • Jayachandran, S. Arul;Gopalakrishnan, S.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.283-295
    • /
    • 2001
  • The postbuckling behaviour of thin plates is an important phenomenon in the design of thin plated structures. In reality plates possess small imperfections and the behaviour of such imperfect plates is of great interest. To numerically study the postbuckling behaviour of imperfect plates explicit incremental or secant matrices have been presented in this paper. These matrices can be used in combination with any thin plate element. The secant matrices are shown to be very accurate in tracing the postbuckling behaviour of thin plates.

Cracking in reinforced concrete flexural members - A reliability model

  • Rao, K. Balaji;Rao, T.V.S.R. Appa
    • Structural Engineering and Mechanics
    • /
    • 제7권3호
    • /
    • pp.303-318
    • /
    • 1999
  • Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.