Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.1.14

A feruloyl esterase derived from a leachate metagenome library  

Rashamuse, Konanani (Enzymes Technologies, CSIR Biosciences)
Sanyika, Walter (Department of Biotechnology & Food Technology, Tshwane University of Technology)
Ronneburg, Tina (Enzymes Technologies, CSIR Biosciences)
Brady, Dean (Enzymes Technologies, CSIR Biosciences)
Publication Information
BMB Reports / v.45, no.1, 2012 , pp. 14-19 More about this Journal
Abstract
A feruloyl esterase encoding gene (designated fae6), derived from a leachate metagenomic library, was cloned and the nucleotide sequence of the insert DNA determined. Translational analysis revealed that fae6 consists of a 515 amino acid poly-peptide, encoding a 55 kDa pre-protein. The Fae6 primary structure contained the G-E-S-A-G sequence, which corresponds well with a typical catalytic serine sequence motif (G-x-S-x-G). The fae6 gene was successfully over-expressed in E. coli and the recombinant protein was purified to 8.4 fold enrichment with 17% recovery. The $K_M$ data showed Fae6 has a high affinity to methyl sinapate while thermostability data indicated that fae6 was thermolabile with a half life ($T_{1/2}$) < 30 min at $50^{\circ}C$. High affinity for Fae6 against methyl sinapate, methyl ferulate and ethyl ferulate suggest that the enzyme can be useful in hydrolyzing ferulated polysaccharides in a biorefinery process.
Keywords
Feruloyl esterase; Lipolytic enzymes; Metagenomics;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
  • Reference
1 Hermoso, J. A., Aparicio, S. J., Molina, R., Juge, N., Gonzalez, R. and Faulds, C. B. (2004) The crystal structure of feruloyl esterase A from Aspergillus niger suggest evolutive functional convergence in feruloyl esterase family. J. Mol. Biol. 338, 495-506.   DOI   ScienceOn
2 Krueger, N. A., Adesogan, A. T., Staples, C. R., Krueger, W. K., Dean, D. B. and Littell, R. C. (2008) The potential to increase digestibility of tropical grasses with a fungal, ferulic acid esterase enzyme preparation. Animal Feed. Sci. Technol. 145, 95-108.   DOI   ScienceOn
3 Nsereko, V. L., Smiley, B. K., Rutherford, W. M., Spielbauer, A., Forrester, K. J., Hettinger, G. H., Harman, E. K. and Harman, B. R. (2008) Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber. Animal Feed. Sci. Technol. 145, 122-135.   DOI   ScienceOn
4 Record, E., Asther M., Sigoillot C., Pages, S., Punt, P. J., Delattre, M., Haon, M., van den Hondel, C. A., Sigoillot, J. C., Lesage-Meessen, L. and Asther, M. (2003) Overproduction of the Aspergillus niger feruloyl esterase for pulp bleaching applications. Appl. Microbiol. Biotechnol. 62, 349-355.   DOI   ScienceOn
5 Koseki, T., Fushinobu, S., Shirakawa, H. and Komai, M. (2009) Occurrence, properties, and applications of feruloyl esterases. Appl. Microbiol. and Biotechnol. 84, 803-810.   DOI   ScienceOn
6 Wahler, D. and Reymond, J. L. (2001) Novel methods for biocatalyst screening. Curr. Opin. Chem. Biol. 5, 152-158.   DOI   ScienceOn
7 Gans, J., Wolinsky, M. and Dunbar, J. (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387-1390.   DOI   ScienceOn
8 Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacone, K. A., Lynch, B. A., MacNeil, I. A. and Minor, C. (2000). Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66, 2541-2547.   DOI   ScienceOn
9 Cowan, D., Meyer, Q., Stafford, W., Muyanga, S., Cameron, R. and Wittwer, P. (2005) Metagenomic gene discovery: past, present and future. Trends Biotech. 23, 321-329.   DOI   ScienceOn
10 Lorenz, P., Liebeton, K., Niehaus, F. and Eck, K. (2002). Screening novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequences space. Curr. Opin. Biotechnol. 13, 572-577.   DOI   ScienceOn
11 Faulds, C. B. (2010) What can feruloyl esterases do for us? J. Phytochem. Rev. 9, 121-132.   DOI   ScienceOn
12 Wong, D. W. S. (2006) Feruloyl esterase: A key enzymes in Biomass degradation. Appl. Biochem. Biotech. 133, 87-109.   DOI   ScienceOn
13 Giuliani, S., Piana, C., Setti, L., Hochkoeppler, A., Pifferi, P. G., Williamson, G. and Faulds, C. B. (2001) Synthesis of pentylferulate by a feruloyl esterase from Aspergillus niger using water-in-oil microemulsions. Biotechnol. Lett. 23, 325-330.   DOI   ScienceOn
14 Hatzakis, N. S., Daphnomili, D. and Smonou, I. (2003) Ferulic acid esterase from Humicola insolens catalyzes enentioselective transesterification of secondary alcohols. J. Mol. Catal. 21, 309-311.   DOI   ScienceOn
15 Bornscheuer, U. T. (2002). Microbial carboxylesterases: classification, properties and application in biocatalysis. FEMS Microbiol. Rev. 26, 73-81.   DOI   ScienceOn
16 Crepin, V. F., Faulds, C. B. and Connerton, I. F. (2004) Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63, 647-652.   DOI   ScienceOn
17 Bradford, M. M. (1976) A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. J. Anal. Biochem. 72, 248-254.   DOI   ScienceOn
18 Mohnen, D., Bar-Peled, M. and Somerville, C. (2008) Biosynthesis of plant cell wall. Biomass recalcitrance (Himmerl, M. E., ed.) pp. 266-277, Blackwell Publishing, Oxford, UK.
19 Laszlo, J. A., Compton, D. L., Eller, F. J., Taylor, S. L. and Isbell, T. A. (2003) Packed-bed bioreactor synthesis of feruloylated monoacyl- and diacylglycerols: clean production of a "green" sunscreen. Green Chem. 5, 382-386.   DOI   ScienceOn
20 Topakas, E., Vafiadi, C. and Christakopoulos, P. (2007) Microbial production, characterization and applications of feruloyl esterases. Process. Biochem. 42, 497-509.   DOI   ScienceOn
21 Henke, E., Bornscheuer, U. T., Schmit, R. D. and Pleiss, J. (2003) A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem. 6, 485-493.
22 Tarbouriech, N., Prates, J. A, Fontes, C. M. and Davies, G. J. (2005) Molecular determinants of substrate specificity in the feruloyl esterase module of xylanase 10B from Clostridium thermocellum. Acta. Crystallogr. D. Biol. Crystallogr. 61, 194-197.   DOI   ScienceOn
23 Kouker, G. and Jaeger, K. E. (1987) Specific and sensitive plate assay for bacterial lipases. Appl. Environ. Microbiol. 53, 211-213.
24 Henke, E., Pleiss, J. and Bornscheuer, U. T. (2002) Activity of lipases and esterases towards tertiary alcohols: Insights into structure-function relationships. Angew. Chem. Int. Ed. 41, 3211-3213.   DOI   ScienceOn
25 Pohlenz, H. D., Boidol, W., Schuttke, I. and Streber, W. R. (1992) Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide sequence of the corresponding gene. J. Bacteriol. 174, 6600-6607.   DOI
26 Zock, J., Cantwell, C., Swartling, J., Hodges, R., Pohl, T., Sutton, K., Rosteck, P. Jr., McGilvray, D. and Queener, S. (1994) The Bacillus subtilis pnbA gene encoding p-nitrobenzyl esterase: cloning, sequence and high-level expression in Escherichia coli. Gene 151, 37-43.   DOI   ScienceOn
27 Rashamuse, K., Burton, S. and Cowan, D. (2007) A novel recombinant ethyl ferulate esterase from Burkholderia multivorans. J. Appl. Microbiol. 103, 1610-1620.   DOI   ScienceOn
28 Andersen, A., Svendsen, A., Vind, J., Lassen, S. F., Hjort, C., Borch, K. and Patkar, S. A. (2002) Studies on ferulic acid esterase activity in fungal lipases and cutinases. Colloids. Sur. Biointer. 26, 47-55.   DOI   ScienceOn
29 Gilliespie, D. E., Rondon, M. R., Goodman, R. M., Handelsman, J. and Williamson, L. L. (2005). Metagenomic library from uncultured microorganisms (Osborn, A. M. and Smith, C. J., eds.) pp. 261-279, Molecular microbial ecology, Taylor and Francis group, New York Ch1, USA.
30 Petersen, E. I., Valinger, G., Solkner, B., Stubenrauch, G. and Schwab, H. (2001) A novel esterase from Burkholderia gladioli shows high deacetylation activity on cephalosporins is related to $\beta$-lactamases and DD-peptidases. J. Biotechnol. 89, 11-25.   DOI   ScienceOn
31 Rashamuse, K. J., Magomani, V., Ronneburg, T. and Brady, D. (2009) A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous betalactamase activity on nitrocefin. Appl. Microbiol. Biotechnol. 83, 491-500.   DOI   ScienceOn
32 Donaghy, J., Kelly, P. F. and McKay, A. M. (1998) Detection of ferulic acid esterase production by Bacillus sp. and Lactobacilli. Appl. Microbiol. Biotechnol. 50, 257-260.   DOI   ScienceOn
33 Bendten, J. D., Nielsen, H., von Heijnie, G. and Brunak, S. (2004) Improved prediction of signal peptide: SignalP 3. 0. J. Mol. Biol. 340, 783-795.   DOI   ScienceOn
34 Altschul, S. F., Madden, T. S., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389-3402.   DOI   ScienceOn
35 Jaeger, K. E., Dijkstra, B. W. and Reetz, M. T. (1999) Bacterial biocatalysis: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann. Rev. Microbiol. 53, 315-351.   DOI   ScienceOn
36 Kang, C., Oh, K., Lee, M., Oh, T., Kin, B. and Yoon, J. (2011) A novel family VII esterase with industrial potential from compost metagenomic library. Microbial. Cell Fact. 10, 41-49.   DOI   ScienceOn
37 Arpigny, K. L. and Jaeger, K. E. (1999) Bacterial lipolytic enzymes: classification and properties. J. Biochem. 343, 177-183.   DOI   ScienceOn