• 제목/요약/키워드: CSIR

검색결과 217건 처리시간 0.022초

Perturbation of Background Atmospheric Black Carbon/PM1 Ratio during Firecracker Bursting Episode

  • Majumdar, Deepanjan;Gavane, Ashok Gangadhar
    • Asian Journal of Atmospheric Environment
    • /
    • 제11권4호
    • /
    • pp.322-329
    • /
    • 2017
  • Perturbation in ambient particulate matter ($PM_1$, $PM_{2.5}$, $PM_{10}$) and black carbon (BC) concentrations was studied during a firecracker bursting episode in Diwali (Festival of Lights) celebrations in Nagpur, India. Firecracker bursting resulted in greater escalation in fine particulates over coarse particulates while $PM_{2.5}$ was found to be dominated by $PM_1$ concentration. On the Diwali day, daily mean concentration of $PM_{2.5}$ and $PM_{10}$ exceeded Indian National Ambient Air Quality Standards by over 1.8 and 1.5 times, respectively, while daily mean BC concentration on the same day was almost two times higher than the previous day. The BC/$PM_1$ ratio reduced remarkably from about 0.26 recorded before fire-cracker bursting activity to about 0.09 during fire-cracker bursting on Diwali night in spite of simultaneous escalation in ambient BC concentration. Such aberration in BC/$PM_1$ was evidently a result of much higher escalation in $PM_1$ than BC in ambient air during firecracker bursting. The study highlighted strong perturbations in ambient $PM_1$, $PM_{2.5}$, $PM_{10}$ concentrations and BC/$PM_1$ during the firecracker bursting episode. Altered atmospheric BC/$PM_1$ ratios could serve as indicators of firecracker-polluted air and similar BC/$PM_1$ ratios in local and regional air masses might be used as diagnostic ratios for firecracker smoke.

A study on mechanical properties of concrete including activated recycled plastic waste

  • Ashok, M.;Jayabalan, P.;Saraswathy, V.;Muralidharan, S.
    • Advances in concrete construction
    • /
    • 제9권2호
    • /
    • pp.207-215
    • /
    • 2020
  • This paper describes the experimental studies carried out to determine the properties of fresh and hardened concrete with Recycled Plastic Waste (RPW) as a partial replacement material for fine aggregates. In the experimental study, RPW was used for replacing river sand and manufactured sand (M sand) aggregates in concrete. The replacement level of fine aggregates was ranging from 5% to 20% by volume with an increment of 5%. M40 grade of concrete with water cement ratio of 0.40 was used in this study. Two different types of RPW were used, and they are (i) un-activated RPW and (ii) activated RPW. The activated RPW was obtained by alkali activation of un-activated RPW using NaOH solution. The hardened properties of the concrete determined were dry density, compressive strength, split tensile strength, flexural strength and ultrasonic pulse velocity (UPV). The properties of the concrete with river sand, M sand, activated RPW and un-activated RPW were compared and inferences were drawn. The effect of activation using NaOH solution was investigated using FT-IR study. The micro structural examination of hardened concrete was carried out using Scanning Electron Microscopy (SEM). The test results show that the strength of concrete with activated RPW was more than that of un-activated RPW. From the results, it is evident that it is feasible to use 5% un-activated RPW and 15% activated RPW as fine aggregates for making concrete without affecting the strength properties.

Multi-constrained optimization combining ARMAX with differential search for damage assessment

  • K, Lakshmi;A, Rama Mohan Rao
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.689-712
    • /
    • 2019
  • Time-series models like AR-ARX and ARMAX, provide a robust way to capture the dynamic properties of structures, and their residuals can be effectively used as features for damage detection. Even though several research papers discuss the implementation of AR-ARX and ARMAX models for damage diagnosis, they are basically been exploited so far for detecting the time instant of damage and also the spatial location of the damage. However, the inverse problem associated with damage quantification i.e. extent of damage using time series models is not been reported in the literature. In this paper, an approach to detect the extent of damage by combining the ARMAX model by formulating the inverse problem as a multi-constrained optimization problem and solving using a newly developed hybrid adaptive differential search with dynamic interaction is presented. The proposed variant of the differential search technique employs small multiple populations which perform the search independently and exchange the information with the dynamic neighborhood. The adaptive features and local search ability features are built into the algorithm in order to improve the convergence characteristics and also the overall performance of the technique. The multi-constrained optimization formulations of the inverse problem, associated with damage quantification using time series models, attempted here for the first time, can considerably improve the robustness of the search process. Numerical simulation studies have been carried out by considering three numerical examples to demonstrate the effectiveness of the proposed technique in robustly identifying the extent of the damage. Issues related to modeling errors and also measurement noise are also addressed in this paper.

Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study

  • Daing, Anika;Singh, Sarvendra Vikram;Saimbi, Charanjeet Singh;Khan, Mohammad Akhlaq;Rath, Srikanta Kumar
    • Journal of Periodontal and Implant Science
    • /
    • 제42권5호
    • /
    • pp.151-157
    • /
    • 2012
  • Purpose: Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of $COX_2$ enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in $COX_2$ gene (-1195G>A and $8_{473}$C>T) with chronic periodontitis in North Indians. Methods: Both SNPs and their haplotypes were used to explore the associations between $COX_2$ polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results: By the individual genotype analysis, mutant genotypes (GA and AA) of $COX_2$-1195 showed more than a two fold risk (odds ratio [OR]>2) and $COX_2$ $8_{473}$ (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of $COX_2$ gene SNPs and chronic periodontitis. Conclusions: Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians.

Numerical analysis of under-designed reinforced concrete beam-column joints under cyclic loading

  • Sasmal, Saptarshi;Novak, Balthasar;Ramanjaneyulu, K.
    • Computers and Concrete
    • /
    • 제7권3호
    • /
    • pp.203-220
    • /
    • 2010
  • In the present study, exterior beam-column sub-assemblage from a regular reinforced concrete (RC) building has been considered. Two different types of beam-column sub-assemblages from existing RC building have been considered, i.e., gravity load designed ('GLD'), and seismically designed but without any ductile detailing ('NonDuctile'). Hence, both the cases represent the under-designed structure at different time frame span before the introduction of ductile detailing. For designing 'NonDuctile' structure, Eurocode and Indian Standard were considered. Non-linear finite element (FE) program has been employed for analysing the sub-assemblages under cyclic loading. FE models were developed using quadratic concrete brick elements with embedded truss elements to represent reinforcements. It has been found that the results obtained from the numerical analysis are well corroborated with that of experimental results. Using the validated numerical models, it was proposed to correlate the energy dissipation from numerical analysis to that from experimental analysis. Numerical models would be helpful in practice to evaluate the seismic performance of the critical sub-assemblages prior to design decisions. Further, using the numerical studies, performance of the sub-assemblages with variation of axial load ratios (ratio is defined by applied axial load divided by axial strength) has been studied since many researchers have brought out inconsistent observations on role of axial load in changing strength and energy dissipation under cyclic load.

Electro-mechanical impedance based strength monitoring technique for hydrating blended cements

  • Thirumalaiselvi, A.;Sasmal, Saptarshi
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.751-764
    • /
    • 2020
  • Real-time monitoring of stiffness and strength in cement based system has received significant attention in past few decades owing to the development of advanced techniques. Also, use of environment friendly supplementary cementitious materials (SCM) in cement, though gaining huge interest, severely affect the strength gain especially in early ages. Continuous monitoring of strength- and stiffness- gain using an efficient technique will systematically facilitate to choose the suitable time of removal of formwork for structures made with SCM incorporated concrete. This paper presents a technique for monitoring the strength and stiffness evolution in hydrating fly ash blended cement systems using electro-mechanical impedance (EMI) based technique. It is important to observe that the slower pozzolanic reactivity of fly ash blended cement systems could be effectively tracked using the evolution of equivalent local stiffness of the hydrating medium. Strength prediction models are proposed for estimating the strength and stiffness of the fly ash cement system, where curing age (in terms of hours/days) and the percentage replacement of cement by fly ash are the parameters. Evaluation of strength as obtained from EMI characteristics is validated with the results from destructive compression test and also compared with the same obtained from commonly used ultrasonic wave velocity (UPV). Statistical error indices indicate that the EMI technique is capable of predicting the strength of fly ash blended cement system more accurate than that from UPV. Further, the correlations between stiffness- and strength- gain over the time of hydration are also established. From the study, it is found that EMI based method can be effectively used for monitoring of strength gain in the fly ash incorporated cement system during hardening.

Effect of chemical input during wet air oxidation pretreatment of rice straw in reducing biomass recalcitrance and enhancing cellulose accessibility

  • Morone, Amruta;Chakrabarti, Tapan;Pandey, R.A.
    • Korean Journal of Chemical Engineering
    • /
    • 제35권12호
    • /
    • pp.2403-2412
    • /
    • 2018
  • The present study was aimed at evaluating the effect of variable sodium carbonate ($Na_2CO_3$) loading during wet air oxidation (WAO) pretreatment of rice straw in reducing biomass recalcitrance. The research study was intended to increase the cellulose recovery, hemicellulose solubilization, lignin removal in the solid fraction and limiting the generation of inhibitors in the liquid fraction while reducing the chemical input. The operating condition of $169^{\circ}C$, 4 bar, 18 min and 6.5 g/L $Na_2CO_3$ loading resulted in maximum cellulose recovery of 82.07% and hemicellulose solubilization and lignin removal of 85.43% and 65.42%, respectively, with a total phenolic content of 0.36 g/L in the liquid fraction. The crystallinity index increased from 47.69 to 51.25 along with enzymatic digestibility with an increase in $Na_2CO_3$ loading from 0 to 6.5 g/L as a result of removal of barriers for saccharification via effective cleavage of ether and ester bonds cross-linking the carbohydrates and lignin as indicated by FT-IR spectroscopy. A further increase in the $Na_2CO_3$ loading to 9.5 g/L did not significantly increase the sugar release. Thus, it was concluded that 6.5 g/L $Na_2CO_3$ during WAO is sufficient to increase the delignification and deacetylation, leading to significant changes in apparent cellulose crystallinity inter alia improvement in cellulose accessibility and digestibility of rice straw.

Indian Research on Artificial Neural Networks: A Bibliometric Assessment of Publications Output during 1999-2018

  • Gupta, B.M.;Dhawan, S.M.
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제10권4호
    • /
    • pp.29-46
    • /
    • 2020
  • The paper describes the quantitative and qualitative dimensions of artificial neural networks (ANN) in India in the global context. The study is based on research publications data (8260) as covered in the Scopus database during 1999-2018. ANN research in India registered 24.52% growth, averaged 11.95 citations per paper, and contributed 9.77% share to the global ANN research. ANN research is skewed as the top 10 countries account for 75.15% of global output. India ranks as the third most productive country in the world. The distribution of research by type of ANN networks reveals that Feed Forward Neural Network type accounted for the highest share (10.18% share), followed by Adaptive Weight Neural Network (5.38% share), Feed Backward Neural Network (2.54% share), etc. ANN research applications across subjects were the largest in medical science and environmental science (11.82% and 10.84% share respectively), followed by materials science, energy, chemical engineering and water resources (from 6.36% to 9.12%), etc. The Indian Institute of Technology, Kharagpur and the Indian Institute of Technology, Roorkee lead the country as the most productive organizations (with 289 and 264 papers). Besides, the Indian Institute of Technology, Kanpur (33.04 and 2.76) and Indian Institute of Technology, Madras (24.26 and 2.03) lead the country as the most impactful organizations in terms of citation per paper and relative citation index. P. Samui and T.N. Singh have been the most productive authors and G.P.S.Raghava (86.21 and 7.21) and K.P. Sudheer (84.88 and 7.1) have been the most impactful authors. Neurocomputing, International Journal of Applied Engineering Research and Applied Soft Computing topped the list of most productive journals.

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana;Saxena, Mayank;Ekambaram, Shivakarthik;Sivaraman, Bhalamurugan
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2021
  • The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Growth of Time-Dependent Strain in Reinforced Cement Concrete and Pre-stressed Concrete Flexural Members

  • Debbarma, Swarup Rn.;Saha, Showmen
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권2호
    • /
    • pp.79-85
    • /
    • 2012
  • This paper presents the differences in growth of time-dependent strain values in reinforced cement concrete (RCC) and pre-stressed concrete (PSC) flexural members through experiment. It was observed that at any particular age, the time-dependent strain values were less in RCC beams than in PSC beams of identical size and grade of concrete. Variables considered in the study were percentage area of reinforcement, span of members for RCC beams and eccentricity of applied pre-stress force for PSC beams. In RCC beams the time-dependent strain values increases with reduction in percentage area of reinforcement and in PSC beams eccentricity directly influences the growth of time-dependent strain. With increase in age, a non-uniform strain develops across the depth of beams which influence the growth of concave curvature in RCC beams and convex curvature in PSC beams. The experimentally obtained strain values were compared with predicted strain values of similar size and grade of plane concrete (PC) beam using ACI 318 Model Code and found more than RCC beams but less than PSC beams.