Browse > Article
http://dx.doi.org/10.5051/jpis.2012.42.5.151

Cyclooxygenase 2 gene polymorphisms and chronic periodontitis in a North Indian population: a pilot study  

Daing, Anika (Department of Periodontics, Faculty of Dental Sciences, Chhatrapati Shahuji Maharaj Medical University)
Singh, Sarvendra Vikram (Genotoxicity Laboratory, Toxicology Division, CSIR-Central Drug Research Institute)
Saimbi, Charanjeet Singh (Department of Periodontics, Faculty of Dental Sciences, Chhatrapati Shahuji Maharaj Medical University)
Khan, Mohammad Akhlaq (Department of Periodontics, Faculty of Dental Sciences, Chhatrapati Shahuji Maharaj Medical University)
Rath, Srikanta Kumar (Genotoxicity Laboratory, Toxicology Division, CSIR-Central Drug Research Institute)
Publication Information
Journal of Periodontal and Implant Science / v.42, no.5, 2012 , pp. 151-157 More about this Journal
Abstract
Purpose: Cyclooxygenase (COX) enzyme catalyzes the production of prostaglandins, which are important mediators of tissue destruction in periodontitis. Single nucleotide polymorphisms of $COX_2$ enzyme have been associated with increasing susceptibility to inflammatory diseases. The present study evaluates the association of two single nucleotide polymorphisms in $COX_2$ gene (-1195G>A and $8_{473}$C>T) with chronic periodontitis in North Indians. Methods: Both SNPs and their haplotypes were used to explore the associations between $COX_2$ polymorphisms and chronic periodontitis in 56 patients and 60 controls. Genotyping was done by polymerase chain reaction followed by restriction fragment length polymorphism. Chi-square test and logistic regression analysis were performed for association analysis. Results: By the individual genotype analysis, mutant genotypes (GA and AA) of $COX_2$-1195 showed more than a two fold risk (odds ratio [OR]>2) and $COX_2$ $8_{473}$ (TC and CC) showed a reduced risk for the disease, but the findings were not statistically significant. Haplotype analysis showed that the frequency of the haplotype AT was higher in the case group and a significant association was found for haplotype AT (OR, 1.79; 95% confidence interval, 1.03 to 3.11; P=0.0370) indicating an association between the AT haplotype of $COX_2$ gene SNPs and chronic periodontitis. Conclusions: Individual genotypes of both the SNPs were not associated while haplotype AT was found to be associated with chronic periodontitis in North Indians.
Keywords
Chronic periodontitis; Cyclooxygenase 2; Single nucleotide polymorphism;
Citations & Related Records
연도 인용수 순위
  • Reference
1 McDevitt MJ, Wang HY, Knobelman C, Newman MG, di Giovine FS, Timms J, et al. Interleukin-1 genetic association with periodontitis in clinical practice. J Periodontol 2000;71:156-63.   DOI
2 Schork NJ, Fallin D, Lanchbury JS. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin Genet 2000;58:250-64.
3 Yoshie H, Kobayashi T, Tai H, Galicia JC. The role of genetic polymorphisms in periodontitis. Periodontol 2000 2007;43:102-32.   DOI
4 Kornman KS, Crane A, Wang HY, di Giovine FS, Newman MG, Pirk FW, et al. The interleukin-1 genotype as a severity factor in adult periodontal disease. J Clin Periodontol 1997;24:72-7.   DOI
5 Agrawal AA, Kapley A, Yeltiwar RK, Purohit HJ. Assessment of single nucleotide polymorphism at IL-1A+4845 and IL-1B+3954 as genetic susceptibility test for chronic periodontitis in Maharashtrian ethnicity. J Periodontol 2006;77: 1515-21.   DOI
6 Shete AR, Joseph R, Vijayan NN, Srinivas L, Banerjee M. Association of single nucleotide gene polymorphism at interleukin-1beta +3954, -511, and -31 in chronic periodontitis and aggressive periodontitis in Dravidian ethnicity. J Periodontol 2010;81:62-9.   DOI
7 Engebretson SP, Lamster IB, Herrera-Abreu M, Celenti RS, Timms JM, Chaudhary AG, et al. The influence of interleukin gene polymorphism on expression of interleukin-1beta and tumor necrosis factor-alpha in periodontal tissue and gingival crevicular fluid. J Periodontol 1999;70: 567-73.   DOI
8 Guan ZM, Liu JJ, Ma X, Wu DH, Yu J, Huang GQ. Relationship between interleukin-6 gene-572C/G polymorphism and chronic periodontitis. Zhonghua Kou Qiang Yi Xue Za Zhi 2008;43:410-3.
9 Xie CJ, Xiao LM, Fan WH, Xuan DY, Zhang JC. Common single nucleotide polymorphisms in cyclooxygenase-2 and risk of severe chronic periodontitis in a Chinese population. J Clin Periodontol 2009;36:198-203.   DOI
10 Astolfi CM, Shinohara AL, da Silva RA, Santos MC, Line SR, de Souza AP. Genetic polymorphisms in the MMP-1 and MMP-3 gene may contribute to chronic periodontitis in a Brazilian population. J Clin Periodontol 2006;33:699-703.   DOI
11 Miyauchi M, Hiraoka M, Oka H, Sato S, Kudo Y, Ogawa I, et al. Immuno-localization of COX-1 and COX-2 in the rat molar periodontal tissue after topical application of lipopolysaccharide. Arch Oral Biol 2004;49:739-46.   DOI
12 Noguchi K, Ishikawa I. The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol 2000 2007;43:85-101.   DOI
13 Offenbacher S, Salvi GE. Induction of prostaglandin release from macrophages by bacterial endotoxin. Clin Infect Dis 1999;28:505-13.   DOI
14 Xu Q, Ji YS, Schmedtje JF Jr. Sp1 increases expression of cyclooxygenase-2 in hypoxic vascular endothelium. Implications for the mechanisms of aortic aneurysm and heart failure. J Biol Chem 2000;275:24583-9.   DOI
15 Offenbacher S, Heasman PA, Collins JG. Modulation of host PGE2 secretion as a determinant of periodontal disease expression. J Periodontol 1993;64(5 Suppl):432-44.
16 Yen CA, Damoulis PD, Stark PC, Hibberd PL, Singh M, Papas AS. The effect of a selective cyclooxygenase-2 inhibitor (celecoxib) on chronic periodontitis. J Periodontol 2008; 79:104-13.   DOI
17 Schaefer AS, Richter GM, Nothnagel M, Laine ML, Noack B, Glas J, et al. COX-2 is associated with periodontitis in Europeans. J Dent Res 2010;89:384-8.   DOI
18 Ho YP, Lin YC, Yang YH, Ho KY, Wu YM, Tsai CC. Cyclooxygenase-2 Gene-765 single nucleotide polymorphism as a protective factor against periodontitis in Taiwanese. J Clin Periodontol 2008;35:1-8.   DOI
19 Loe H. The gingival index, the plaque index and the retention index systems. J Periodontol 1967;38:Suppl:610-6.   DOI
20 Green JC, Vermillion JR. The oral hygiene index: a method for classifying oral hygiene status. J Am Dent Assoc 1960;61: 172-9.   DOI
21 Sanak M, Szczeklik W, Szczeklik A. Association of COX-2 gene haplotypes with prostaglandins production in bronchial asthma. J Allergy Clin Immunol 2005;116:221-3.   DOI
22 Loe H, Silness J. Periodontal disease in pregnancy. I. Prevalence and severity. Acta Odontol Scand 1963;21:533-51.   DOI
23 Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann Periodontol 1999;4:1-6.   DOI
24 Zhang X, Miao X, Tan W, Ning B, Liu Z, Hong Y, et al. Identification of functional genetic variants in cyclooxygenase-2 and their association with risk of esophageal cancer. Gastroenterology 2005;129:565-76.
25 Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Res 2005;15:97-8.   DOI
26 Li Z, Zhang Z, He Z, Tang W, Li T, Zeng Z, et al. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Res 2009;19:519-23.   DOI
27 Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 2000;15:2-12.   DOI
28 Dubois RN, Abramson SB, Crofford L, Gupta RA, Simon LS, Van De Putte LB, et al. Cyclooxygenase in biology and disease. FASEB J 1998;12:1063-73.   DOI
29 Gadgil M, Joshi NV, Shambu Prasad UV, Manoharan S, Patil S. Peopling of India. In: Balasubramanian D, Rao NA. The Indian human heritage. Hyderabad: Universities Press; 1998. p.100-29.
30 Grossi SG, Genco RJ, Machtei EE, Ho AW, Koch G, Dunford R, et al. Assessment of risk for periodontal disease. II. Risk indicators for alveolar bone loss. J Periodontol 1995; 66:23-9.   DOI
31 Dixon DA, Kaplan CD, McIntyre TM, Zimmerman GA, Prescott SM. Post-transcriptional control of cyclooxygenase-2 gene expression. The role of the 3'-untranslated region. J Biol Chem 2000;275:11750-7.   DOI
32 Kosaka T, Miyata A, Ihara H, Hara S, Sugimoto T, Takeda O, et al. Characterization of the human gene (PTGS2) encoding prostaglandin-endoperoxide synthase 2. Eur J Biochem 1994;221:889-97.   DOI
33 Papafili A, Hill MR, Brull DJ, McAnulty RJ, Marshall RP, Humphries SE, et al. Common promoter variant in cyclooxygenase-2 represses gene expression: evidence of role in acute-phase inflammatory response. Arterioscler Thromb Vasc Biol 2002;22:1631-6.   DOI
34 Guo Y, Zhang X, Tan W, Miao X, Sun T, Zhao D, et al. Platelet 12-lipoxygenase Arg261Gln polymorphism: functional characterization and association with risk of esophageal squamous cell carcinoma in combination with COX-2 polymorphisms. Pharmacogenet Genomics 2007;17:197-205.   DOI
35 Cok SJ, Morrison AR. The 3'-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J Biol Chem 2001;276:23179-85.   DOI
36 Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, et al. The structure of haplotype blocks in the human genome. Science 2002;296:2225-9.   DOI
37 International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007;449:851-61.   DOI