• 제목/요약/키워드: CSIR

검색결과 217건 처리시간 0.024초

Effective CFRP retrofit strategy for flexural deficient RC beams

  • Banjara, Nawal Kishor;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • 제69권2호
    • /
    • pp.163-175
    • /
    • 2019
  • Structural deterioration arises due to aging, environmental effects, deficiencies during design and construction phase, and overloading. Experimental and numerical investigations are carried out in this study to evaluate the performance of control and flexural deficient reinforced concrete (RC) beams under monotonic loading. Three levels of flexural deficiency are considered in this study. After confirming load carrying capacities of control and flexural deficient beams, the flexural deficient RC beams are strengthened with carbon fibre reinforced polymer (CFRP) fabric. CFRP strengthened RC beams are tested under monotonic loading and compared with the performance of control specimen. Further, non-linear finite element analyses are also carried out to evaluate the flexural performance of control, deficient and CFRP strengthened flexural deficient RC beams. There is good correlation between results of experimental and numerical investigations. Numerical approach presented in this study can be adopted for assessing the adequacy of CFRP retrofit measure.

Quantum Sensing Research: A Scientometric Assessment of Global Publications during 1991-2020

  • Gupta, Brij Mohan;Dhawan, Surinder Mohan;Mamdapur, Ghouse Modin
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제12권3호
    • /
    • pp.31-49
    • /
    • 2022
  • The study presents a global research scenario in the domain of quantum sensing in quantitative and qualitative terms. The study is based on an analysis of 588 global publications in the field, sourced from the Scopus database for the period 1991-2020. The study identified key countries, organizations and authors, network collaborative linkages at national, institutional, and author level. In addition, it identified broad subject areas intersecting quantum sensing research, key journals for research communications, and broad characteristics of highly-cited papers. The study finds that the USA and Germany lead the world ranking in quantum sensing research with a combined share of 50% to the global output. The USA, Germany, and Italy are the home countries to 13 of the top 15 most productive organizations, and also the home countries to 14 of the top 15 most productive authors in the subject. The top journals publishing most research publications are Physical Review A, Physical Review Letters and New Journal of Physics. However, in the most cited journals list in the subject, Agriculture & Forest Meterology, Science and Physical Review A tops the list.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Antiproliferative Activity of Lavatera cashmeriana- Protease Inhibitors towards Human Cancer Cells

  • Rakashanda, Syed;Qazi, Asif Khurshid;Majeed, Rabiya;Rafiq, Shaista;Dar, Ishaq Mohammad;Masood, Akbar;Hamid, Abid;Amin, Shajrul
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3975-3978
    • /
    • 2013
  • Background: Proteases play a regulatory role in a variety of pathologies including cancer, pancreatitis, thromboembolic disorders, viral infections and many others. One of the possible strategies to combat these pathologies seems to be the use of protease inhibitors. LC-pi I, II, III and IV (Lavatera cashmerian-protease inhibitors) have been found in vitro to strongly inhibit trypsin, chymotrypsin and elastase, proteases contributing to tumour invasion and metastasis, indicated possible anticancer effects. The purpose of this study was to check in vitro anticancer activity of these four inhibitors on human lung cancer cell lines. Material and Methods: In order to assess whether these inhibitors induced in vitro cytoxicity, SRB assay was conducted with THP-1 (leukemia), NCIH322 (lung) and Colo205, HCT-116 (colon) lines. Results: LC-pi I significantly inhibited the cell proliferation of all cells tested and also LC-pi II was active in all except HCT-116. Inhibition of cell growth by LC-pi III and IV was negligible. $IC_{50}$ values of LC-pi I and II for NCIH322, were less compared to other cell lines suggesting that lung cancer cells are more inhibited. Conclusion: These investigations might point to future preventive as well as curative solutions using plant protease inhibitors for various cancers, especially in the lung, hence warranting their further investigation.

Structural damage detection through longitudinal wave propagation using spectral finite element method

  • Kumar, K. Varun;Saravanan, T. Jothi;Sreekala, R.;Gopalakrishnan, N.;Mini, K.M.
    • Geomechanics and Engineering
    • /
    • 제12권1호
    • /
    • pp.161-183
    • /
    • 2017
  • This paper investigates the damage identification of the concrete pile element through axial wave propagation technique using computational and experimental studies. Now-a-days, concrete pile foundations are often common in all engineering structures and their safety is significant for preventing the failure. Damage detection and estimation in a sub-structure is challenging as the visual picture of the sub-structure and its condition is not well known and the state of the structure or foundation can be inferred only through its static and dynamic response. The concept of wave propagation involves dynamic impedance and whenever a wave encounters a changing impedance (due to loss of stiffness), a reflecting wave is generated with the total strain energy forked as reflected as well as refracted portions. Among many frequency domain methods, the Spectral Finite Element method (SFEM) has been found suitable for analysis of wave propagation in real engineering structures as the formulation is based on dynamic equilibrium under harmonic steady state excitation. The feasibility of the axial wave propagation technique is studied through numerical simulations using Elementary rod theory and higher order Love rod theory under SFEM and ABAQUS dynamic explicit analysis with experimental validation exercise. Towards simulating the damage scenario in a pile element, dis-continuity (impedance mismatch) is induced by varying its cross-sectional area along its length. Both experimental and computational investigations are performed under pulse-echo and pitch-catch configuration methods. Analytical and experimental results are in good agreement.

무선 애드혹 네트워크에서의 간섭 제어 수신 기법 (Interference Aware Receiver Filtering for Wireless Ad Hoc Networks)

  • 신성필;이병주;박선호;심병효
    • 전자공학회논문지
    • /
    • 제50권3호
    • /
    • pp.9-15
    • /
    • 2013
  • 근래 애드혹 네트워크에서 송신 노드가 하나의 안테나만을 가지고 있을 지라도 다수의 수신 안테나로 선형적인 네트워크 throughput에 근접한 값을 얻을 수 있음이 보여졌다. 본 논문에서는 수신 노드에서 채널 상태 정보 (channel state information at reciever, CSIR)가 주어지지 않았을 때, 비모수 기반 선형 평균 제곱오차 (MMSE) 수신기를 사용하여 안테나 수에 비례하는 선형 이득을 얻는 수신 기법을 제안한다. 제안하는 방법에서는 간섭과 노이즈의 공분산에 관심 있는 채널 정보를 포함하여 전송률의 손실 없이 최적의 MMSE 전송 용량에 근접한 결과를 얻는다. 네트워크 전송 용량에 대한 분석과 모의실험을 통해 제안하는 비모수 기반의 선형 MMSE 수신 기법이 기존의 알고리즘들보다 우수한 성능을 가질 수 있음을 확인할 수 있다.

Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with Chain-Based Path Planning in GPS Denied Environments

  • Bharadwaja, Yathirajam;Vaitheeswaran, S.M;Ananda, C.M
    • 항공우주시스템공학회지
    • /
    • 제14권2호
    • /
    • pp.1-11
    • /
    • 2020
  • Detecting obstacles and generating a suitable path to avoid obstacles in real time is a prime mission requirement for UAVs. In areas, close to buildings and people, detecting obstacles in the path and estimating its own position (egomotion) in GPS degraded/denied environments are usually addressed with vision-based Simultaneous Localization and Mapping (SLAM) techniques. This presents possibilities and challenges for the feasible path generation with constraints of vehicle dynamics in the configuration space. In this paper, a near real-time feasible path is shown to be generated in the ORB-SLAM framework using a chain-based path planning approach in a force field with dynamic constraints on path length and minimum turn radius. The chain-based path plan approach generates a set of nodes which moves in a force field that permits modifications of path rapidly in real time as the reward function changes. This is different from the usual approach of generating potentials in the entire search space around UAV, instead a set of connected waypoints in a simulated chain. The popular ORB-SLAM, suited for real time approach is used for building the map of the environment and UAV position and the UAV path is then generated continuously in the shortest time to navigate to the goal position. The principal contribution are (a) Chain-based path planning approach with built in obstacle avoidance in conjunction with ORB-SLAM for the first time, (b) Generation of path with minimum overheads and (c) Implementation in near real time.

Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete

  • Murthy A, Ramachandra;Aravindan, M.;Ganesh, P.
    • Structural Engineering and Mechanics
    • /
    • 제65권3호
    • /
    • pp.315-325
    • /
    • 2018
  • This paper predicts the flexural behaviour of reinforced concrete (RC) beams strengthened with a precast strip of ultra-high performance fiber-reinforced concrete (UHPFRC). In the first phase, ultimate load capacity of preloaded and strengthened RC beams by UHPFRC was predicted by using various analytical models available in the literature. RC beams were preloaded under static loading approximately to 70%, 80% and 90% of ultimate load of control beams. The models such as modified Kaar and sectional analysis predicted the ultimate load in close agreement to the corresponding experimental observations. In the second phase, the famous fatigue life models such as Papakonstantinou model and Ferrier model were employed to predict the number of cycles to failure and the corresponding deflection. The models were used to predict the life of the (i) strengthened RC beams after subjecting them to different pre-loadings (70%, 80% and 90% of ultimate load) under static loading and (ii) strengthened RC beams after subjecting them to different preloading cycles under fatigue loading. In both the cases precast UHPFRC strip of 10 mm thickness is attached on the tension face. It is found that both the models predicted the number of cycles to failure and the corresponding deflection very close to the experimental values. It can be concluded that the models are found to be robust and reliable for cement based strengthening systems also. Further, the Wang model which is based on Palmgren-Miner's rule is employed to predict the no. of cycles to failure and it is found that the predicted values are in very good agreement with the corresponding experimental observations.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • 제14권4호
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Efficacy of Three Different Plant Species for Arsenic Phytoextraction from Hydroponic System

  • Tiwari, Sarita;Sarangi, Bijaya Ketan;Pandey, Ram Avatar
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.145-149
    • /
    • 2014
  • Arsenic (As) is one of the heavy metals which causes acute bio-toxicity even at low concentration and has disastrous effect on environment. In some countries, As contamination has become alarming and increasing day by day as consequences of unsustainable management practices. Many existing physical, chemical and biological processes for As removal from water system are not feasible due to techno-economic limitations. The present study highlights the scope of biological strategy for As removal through phytoextraction. Arsenic uptake and accumulation in the biomass of three plant species and their As tolerance abilities have been investigated to develop an efficient phytoextraction system in combination of these plant species. Three non-crop plant species, Pteris vittata; Mimosa pudica, and Eichhornia crassipus were treated with 0-200 mg/L As in liquid nutrient solution for 14 days. P. vittata accumulated total 9,082.2 mg (8,223 mg in fronds) As/kg biomass and Eichhornia total 6,969 mg (4,517 mg in fronds)/kg biomass at 200 mg/L As concentration, respectively. Bioaccumulation factor (BF) and translocation factor (TF) were estimated to differentiate between excluders, accumulators and accumulation in above ground biomass. Pteris and Eichhornia have highest BF (67 and 17) and TF (64 and 3), respectively. In contrast, Mimosa accumulated up to 174 mg As/kg plant biomass which is low in comparison with other two plants, and both BF and TF were ${\leq}1$. This study reveals that Pteris and Eichhornia are As hyperaccumulator, and potential candidates for As removal from water system.