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Interest in autonomous Unmanned Air vehicles 

(UAVs) is growing rapidly, because UAVs are 

becoming essential and important for applications in 

aerial surveillance, visual inspection, remote farming, 

filming and military applications. The primary source 

of navigation for these vehicles has been the Global 

Positioning System (GPS). Recent researches are 

addressing to improve the capabilities of UAVs in 

situations for GPS denied or degraded environment 

with path or trajectory generation during aggressive 

maneuvers [1, 2], collaborative construction [3], and 

aerial recovery [4] and so on. In typical cluttered 

environment (urban or indoor environments) 

applications, UAV pilotage using GPS signals may be 

not possible due to degradation or unavailability, 

because of signal attenuation by buildings or 

multipath effects. In obstacle rich environments, path 

following and navigation may also be hindered due to 

collisions affecting the success of the mission.  

It is therefore desirable that the UAV be equipped 

with the following capabilities (1) Knowledge of the 

UAV surrounding environment with limited on-board 

sensors, (2) Estimating the position of UAV from 

limited on-board sensing and (3) Detecting obstacles 

and generating a path to avoid the obstacles while 

UAV is flying towards the goal. Apart from the above 

capabilities, there are some important constraints on 

the on-board sensors i.e. the weight, power and cost. 

The first two are addressed with widely used 

SLAM/Odometry based navigation methods [5, 6, 7, 

8]. However, SLAM based navigation methods 

require lot of UAV on-board computation power. 

Since these are able to provide the 3D pose of UAV 
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and structure of the environment with higher 

accuracy, the relative 3D positions of obstacles with 

respect to the present position of UAV can be found 

directly without any additional overhead. So the 

computation requirement is justified with its abilities 

towards the above three capabilities. In the third one, 

path-planning problem is generally addressed by 

using either potential fields or spatial search 

methods. There have been some attempts for 

building a full autonomous system with obstacle 

avoidance capability by using the SLAM based 

navigation methods [9, 10, 11]. These methods 

generate potential fields or searches in the entire 

configuration space around the UAV. Therefore, 

these consume lot of processing power for 

generating the feasible path from the on-board 

processor. For the Size, Weight and Power (SWaP) 

related constraints, the Monocular-Camera based 

SLAM is the ideal solution in real-time.  

The present paper seeks to address the above 

computational power requirement problems with the 

following improvements to the chain-based path 

planner and real-time integration with Monocular-

SLAM method. 

a) Chain-based path planner to limit the generation 

of potential fields only to the UAV waypoints 

instead of entire configuration space. 

b) We address an issue related to the chain-based 

path planner for the urban environments in a 

head-on scenario with obstacles. 

c) Integration of chain-based path planner with 

ORB-SALM [7] for the first time to get an 

accurate and real-time feasible pose and map 

estimates. 

d) Near real-time implementation and experiments 

with the proposed system integration. 

 

 
 

 

Currently, the problem of estimating the position of 

the UAV with respect to the environment is typically 

addressed using different sensors like laser scanners 

[12, 13], ultrasound sensors, cameras [14, 15, 16, 

17] and other sensor modalities [18, 19]. Laser 

scanners introduce weight, cost and power 

consumption penalties. Ultrasonic sensors have very 

limited range. When compared to other types of 

sensors, monocular cameras have the following 

advantages [14]: (a) The camera sensor provides 

lots of information about environment when 

compared to its size, weight and power consumption. 

(b) In contrast to depth measuring devices, the range 

of a monocular camera is virtually unlimited – 

allowing a monocular camera system to operate both 

in small, confined and large, open environments. 

In addition, the monocular camera is immensely 

popular for its SWaP characteristics and detecting 

obstacles in the environment surrounding the UAV 

and avoids obstacles with the help of reactive path 

planning algorithms [11]. Several methods and 

techniques have been used to incorporate 

information about the environment and 

simultaneously localize the vehicle in the 

environment. This is referred to as SLAM 

(Simultaneous Localization and Mapping) [20, 8, 7]. 

SLAM builds the map of the surrounding environment 

and localizes the UAV position in the map. Filtering 

based techniques [20] have been used widely for the 

SLAM problem until 2007 but in the year 2008 a new 

better approach called PTAM (Parallel Tracking and 

Mapping) based on keyframes introduced by G. Klein 

and D. Murray in the paper [6].  

In keyframe-based techniques, the tracking and 

mapping are separated in two threads. The mapping 

thread consumes lot of time computation because of 

bundle adjustment process. This mapping thread is 

executed when new keyframes are inserted into the 

map, so this time consuming process is overcome 

with heuristics placed on keyframe selection. In 

filtering based SLAM techniques, for each frame, the 

point features are triangulated and the entire map is 

evaluated. In keyframe-based techniques, only for 

new keyframes, the point features are added to the 

map and a bundle adjustment procedure [21] is 

executed. Thus the keyframe-based approaches 

outperforms the filtering based techniques [22] in 

many ways. 

 

 
Obstacles are detected by different sensor modalities 

like laser scanners and ultrasound sensors etc. The 

laser scanner provides only 2D information of the 

environment with high cost and weight penalties. 

Whereas ultrasound sensors have the range 
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limitation and works only in a single sensing 

direction. When compared with these sensors, the 

monocular-camera provides rich information about 

3D structure of the environment. Either by extracting 

optical flow information [23] or by using SLAM 

technique [10], the obstacles using a monocular-

camera can be detected. Since the obstacle 3D 

positions are required with respect to the present 

position of the UAV for path generation, the SLAM 

methods provides an accurate and direct (3D position) 

solution for the obstacle positions/detection [24]. 

The obstacle avoidance path is generated either by 

using artificial potential fields [25] or spatial search 

methods like Rapidly exploring Random Trees (RRT), 

A* algorithm [11] etc. Spatial search methods need 

to explore the entire configuration space around the 

UAV. Similarly, the potential field methods also need 

to apply the artificial attraction and repulsion forces 

at each point in the configuration space. This 

consideration of entire configuration space near the 

UAV gives the better solution for the optimal path 

with high computational cost. This puts the 

limitations in real-time deployment of these methods 

with limited on-board processing power. 

 

 
  

In the present paper based on the review presented, 

an obstacle detection method is used based on the 

keyframe-based approach. In this, the ORB-SLAM 

[7] technique is used because of its advantages to 

obtain obstacle detection solutions in near real time. 

The method is combined with a novel modified path 

planning approach using a chain-based approach for 

the first time. The chain-based approach has 

advantages over traditional path planning approach in 

the way it uses only few chain of waypoints instead 

of entire configuration space for the potential fields 

generation. This helps to reduce the processing time 

for the path generation in real-time. The method 

generates the best path in the ORB-SLAM 

framework in a force field with dynamic constraints 

on the path length between the waypoints and 

minimum turn radius. 

The outline of overall process is shown in the 

Figure-1. We have added the chain-based path 

planner in the viewer thread of the ORB-SLAM. It 

takes the current pose and map update information 

for the path generation. In section-2, the chain based 

path planning algorithm is explained by addressing 

the issues aroused for urban environments. In 

section-3, ORB-SLAM procedure is outlined and 

explained. In section-4, integration of chain-based 

path planning with ORB-SLAM is presented. In 

section-5, the simulation and real-time experiment 

results are shown. Finally, the conclusion is 

presented in section-6. In Section-7, we presented 

the possible improvements and limitations in the 

proposed system 

 

 
Fig. 1 The overall process flow for obstacle detection 
and avoidance using ORB-SLAM. The ORB-SLAM 
sends the current pose and map update information to the 
chain-based path planner. We did not change the main 
components in the ORB-SLAM, which is shown as 
shaded dotted line box. The proposed method is shown as 
blue color lines and text. 
 

 
 

The chain-based path planning algorithm as stated in 

[26, 27, 28], is used for avoiding collision with 

intruder aircraft and the test UAV. This algorithm is 

tested in MATLAB simulation with the assumption 

that the intruder states are already known to the 

UAV. In this work, the same algorithm is adopted 

with the following modifications for the obstacles 

avoidance in the urban environments.  

1) The repulsive force is rotated by 900, when 

aircraft is approaching exactly opposite to the 

repulsive force direction of the obstacle (see the 

Figure-3). 
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2) More repulsive force is applied to end nodes of 

the chain i.e. the repulsive force is amplified 

according to the distance from UAV to the nodes 

of chain. Nodes which are near to the UAV, more 

straitening force is applied.  

This work generates a collision free path in an 

urban or indoor environments with a chain of 

waypoints placed in a virtual force field. The path is 

represented as series of connected waypoints. The 

distance between the any two successive waypoints 

is made equal at all times and is proportional to the 

UAV speed. This entire process is illustrated in 

Figure-2. The chain of way points are restricted to 

move in 2D plane i.e. the aircraft cannot ascent or 

decent in an urban environment. When the UAV is 

reached to first node of the chain, the first node is 

deleted and an extra node is added to the chain in 

the direction of last edge. These are mathematically 

described in the next paragraph. 

 

 
Fig. 2 Chain-based path planning for obstacle avoidance. 
Red nodes indicates original waypoints in the absence of 
obstacles, Blue nodes indicates obstacle avoidance path 
generated after applying chain-based obstacle avoidance 
algorithm. The circle around the UAV indicates the 
assumption of local map build by the UAV using ORB-
SLAM technique. 
 

Let  𝒛𝒛𝑖𝑖 = (𝑥𝑥𝑖𝑖, 𝑦𝑦𝑖𝑖)𝑇𝑇  ∈  ℝ2 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖 = 1, 2, … . , 𝑁𝑁  be the 

position of 𝑖𝑖𝑡𝑡ℎ  waypoint and the 𝑁𝑁 link chain can be 

represented by the following equation. 

𝒄𝒄 = [𝒛𝒛1
𝑇𝑇, 𝒛𝒛2

𝑇𝑇, … … , 𝒛𝒛𝑁𝑁
𝑇𝑇 ]𝑇𝑇        (1) 

If chain is placed in a force field, it experiences the 

force. So according to Newton's second law of 

motion, the dynamic equation of motion of chain is 

given by   

�̈�𝒄 = 𝑭𝑭                    (2)  

Here 𝑭𝑭  is sum of all applied forces acting on the 

nodes. 

There are three unconstrained forces acting on the 

nodes, 1) The attractive force toward the designated 

goal of UAV and 2) The repulsive force from the 

obstacle to the UAV and 3) The straitening force. 

The attractive force is given by 

𝑭𝑭𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎 = −𝛻𝛻𝒇𝒇(𝒛𝒛)               (3)  

Where 𝒇𝒇(𝒛𝒛) is the attractive potential function given 

by 

𝒇𝒇(𝒛𝒛) = 𝜉𝜉 (‖𝒛𝒛𝒊𝒊 − 𝒛𝒛𝒈𝒈‖2)        (4) 

Where  𝒛𝒛𝒊𝒊 is 𝑖𝑖𝑡𝑡ℎ way point in the chain,  𝒛𝒛𝒈𝒈 is goal 

location for the UAV,  ‖∙‖  represents the standard 

Euclidean norm and ξ  is a constant scaling parameter. 

The distance vector 𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚) from 𝑚𝑚 𝑡𝑡ℎ obstacle to 

𝑛𝑛𝑡𝑡ℎ node of chain given by 

𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚)  = 𝒛𝒛𝑛𝑛 − 𝒙𝒙𝑚𝑚        (5) 

Where 𝒙𝒙𝑚𝑚 is the 𝑚𝑚 𝑡𝑡ℎ  obstacle position and 𝑚𝑚 = 1, 2 ∙∙∙
∙∙∙ 𝑀𝑀. Where M is number of obstacles in local map of 

UAV. The unit vector in this direction is given by 

�̂�𝐝𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚) =  𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛,𝑚𝑚)
‖𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛,𝑚𝑚)‖        (6) 

The repulsive force acting on the node 𝑛𝑛 of chain 

from 𝑚𝑚 𝑡𝑡ℎ obstacle is given by 

𝒇𝒇𝑎𝑎𝑟𝑟(𝑛𝑛, 𝑚𝑚) =

{
�̂�𝐝𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚)𝛾𝛾𝑎𝑎𝑟𝑟1𝑒𝑒(−𝛾𝛾𝑟𝑟𝑟𝑟2‖𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛,𝑚𝑚)‖ 𝑛𝑛), 𝑖𝑖𝑖𝑖 ‖𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚)‖ < 𝑑𝑑𝑚𝑚𝑎𝑎𝑧𝑧

0,                                                𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒
  

       (7) 

Where  𝑑𝑑𝑚𝑚𝑎𝑎𝑧𝑧  is the minimum safe distance between 

UAV and the obstacle, 𝛾𝛾𝑎𝑎𝑟𝑟2 & 𝛾𝛾𝑎𝑎𝑟𝑟2  are nonnegative 

constants.  𝑛𝑛  in the exponential term gives 

amplification to the distance (‖𝒅𝒅𝑧𝑧𝑧𝑧(𝑛𝑛, 𝑚𝑚)‖) according 

to the distance between UAV and present node. The 

total force acting on the 𝑛𝑛 𝑡𝑡ℎ node of chain from all 

the obstacles is given by 

𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧(𝑛𝑛) = ∑ 𝒇𝒇𝑎𝑎𝑟𝑟(𝑛𝑛, 𝑚𝑚)𝑀𝑀
𝑚𝑚=1          (8) 

So the total repulsive force acting on the 

corresponding chain nodes is  

𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧 = [𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧
𝑇𝑇 (1),  𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧

𝑇𝑇 (2),  𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧
𝑇𝑇 (1) ∙∙∙∙∙∙∙∙∙∙∙  𝑭𝑭𝑎𝑎𝑟𝑟𝑧𝑧𝑧𝑧

𝑇𝑇 (𝑁𝑁)]𝑇𝑇

                        (9) 

The drawback in this approach is, When UAV is 

approaching exactly opposite to the repulsive force 



 Obstacle Avoidance for Unmanned Air Vehicles Using Monocular-SLAM with  
                                                         Chain-Based Path Planning in GPS Denied Environments  5 

 

 

from obstacle, the nodes get repelled towards the 

UAV. Because of this, the distance between chain 

nodes and minimum turn angle between the edges of 

chain gets disturbed. To overcome this issue, the 

repulsive force is rotated by 900 whenever the angle 

between repulsive force and the UAV heading is 

±1800 as shown in the Figure-3. 

To maintain the minimum turn radius of the UAV, a 

straitening force is applied at each node to obeying 

the kinematics and dynamics of the UAV. Let 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 be 

the minimum turn radius of the UAV and let 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 is 

the maximum angle allowed to form between any two 

edges of the chain. So the minimum number of links 

required to complete the circle with radius of 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 is 

𝑛𝑛 = 2𝜋𝜋
𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 

        (10) 

 

 
Fig. 3 Illustration of repulsive force opposite to the UAV 
heading and modified path after force rotation. 

 

 
Fig. 4 Approximation of closed loop chain with a circle 
of radius 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚  to find maximum allowable turn 
angle 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 . 
 

From the Figure-4, the total length of closed chain 

path around circle with radius 𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚 should be greater 

than or equal to circumference of the circle. 

𝑖𝑖. 𝑒𝑒.    𝑛𝑛𝑛𝑛 ≥ 2𝜋𝜋𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚       (11) 

From Equations (10) and (11), we get 

𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 ≤  𝐿𝐿
𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚

       (12) 

A straightening force 𝒇𝒇𝑠𝑠𝑠𝑠(𝑖𝑖) is applied at each node 

such that the turn angle at each node must be less 

than 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚  i.e. 𝜃𝜃𝑚𝑚 < 𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚 . Where 𝜃𝜃𝑚𝑚 is the angle 

between the vectors  𝒅𝒅𝑚𝑚2 𝑎𝑎𝑛𝑛𝑎𝑎 𝒅𝒅𝑚𝑚1  as shown in the 

Figure-5. Where 𝒅𝒅𝑚𝑚1 = 𝒛𝒛𝑁𝑁−1 − 𝒛𝒛𝑁𝑁−2 and  𝒅𝒅𝑚𝑚2 = 𝒛𝒛𝑁𝑁−2 −
𝒛𝒛𝑁𝑁−3, then the straightening force is given by 

𝒇𝒇𝑠𝑠𝑠𝑠(𝑖𝑖) = 𝜇𝜇𝑚𝑚(𝒅𝒅𝑚𝑚1)⊥
1+exp (𝑘𝑘(𝜃𝜃𝑚𝑚𝑚𝑚𝑚𝑚−𝜃𝜃𝑚𝑚)

      (13) 

Where 𝑖𝑖 = 1, 2,∙∙∙∙∙∙∙∙, 𝑁𝑁 . The upper limit on the 

straightening force for the node 𝑖𝑖 is 𝜇𝜇𝑚𝑚 = (𝑁𝑁 + 1 − 𝑖𝑖). 𝑘𝑘 

is a positive constant and (𝒅𝒅𝑚𝑚1)⊥ is the perpendicular 

component of the vector 𝒅𝒅𝑚𝑚1. 

 

 
Fig. 5 Illustration of straightening force at node 𝒛𝒛𝑁𝑁−1. 

The vector 𝑭𝑭𝑠𝑠𝑠𝑠 = [𝒇𝒇𝑠𝑠𝑠𝑠
𝑇𝑇 (1), 𝒇𝒇𝑠𝑠𝑠𝑠

𝑇𝑇 (2),……… . . , 𝒇𝒇𝑠𝑠𝑠𝑠
𝑇𝑇 (𝑁𝑁)]𝑇𝑇  is 

the straitening forces acting on all the nodes. Then 

the total force is defined as 

𝑭𝑭 = 𝑭𝑭𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 + 𝑭𝑭𝒂𝒂𝒓𝒓𝒛𝒛𝒓𝒓 + 𝑭𝑭𝒔𝒔𝒂𝒂            (14) 

Apart from these unconstrained forces, an extra-

constrained force is applied to maintain an equal 

length between the chain nodes. Let 𝑛𝑛 be the desired 

length of each edge in the chain. Similar to [27], this 

constraint can be written as 

[
 
 
 ‖𝒛𝒛2 − 𝒛𝒛1‖2 − 𝑛𝑛2

‖𝒛𝒛3 − 𝒛𝒛2‖2 − 𝑛𝑛2

⋮
‖𝒛𝒛𝑁𝑁 − 𝒛𝒛𝑁𝑁−1‖2 − 𝑛𝑛2]

 
 
 
= 0            (15) 

Differentiating the above equation-(15) once, we get 

the velocity constraints 

[
 
 
 2(𝒛𝒛2 − 𝒛𝒛1)𝑇𝑇(�̇�𝒛2 − �̇�𝒛1)

2(𝒛𝒛3 − 𝒛𝒛2)𝑇𝑇(�̇�𝒛3 − �̇�𝒛2)
⋮

2(𝒛𝒛𝑁𝑁 − 𝒛𝒛𝑁𝑁−1)𝑇𝑇(�̇�𝒛𝑁𝑁 − �̇�𝒛𝑁𝑁−1)]
 
 
 
= 0      (16) 

Differentiating once again, we get the acceleration 

constraints 

𝑨𝑨(𝒄𝒄)�̈�𝒄 = 𝒃𝒃(�̇�𝒄)              (17) 

Where 

𝑨𝑨(𝒄𝒄) =

[
 
 
 
 (𝒛𝒛𝟐𝟐 − 𝒛𝒛𝟏𝟏)𝑇𝑇 0 … 0
−(𝒛𝒛𝟑𝟑 − 𝒛𝒛𝟐𝟐)𝑇𝑇 (𝒛𝒛𝟑𝟑 − 𝒛𝒛𝟐𝟐)𝑇𝑇 … 0

⋮ ⋱ ⋱ ⋮
0 … −(𝒛𝒛𝑵𝑵−𝟐𝟐 − 𝒛𝒛𝑵𝑵−𝟏𝟏)𝑻𝑻 (𝒛𝒛𝑵𝑵−𝟐𝟐 − 𝒛𝒛𝑵𝑵−𝟏𝟏)𝑻𝑻

0 ⋯ 0 −(𝒛𝒛𝑵𝑵 − 𝒛𝒛𝑵𝑵−𝟏𝟏)𝑻𝑻]
 
 
 
 
(18)  

And 
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𝒃𝒃(𝒄𝒄) = −
[
 
 
 (�̇�𝒛𝟐𝟐 − �̇�𝒛𝟏𝟏)𝑇𝑇(�̇�𝒛𝟐𝟐 − �̇�𝒛𝟏𝟏)

(�̇�𝒛𝟑𝟑 − �̇�𝒛𝟐𝟐)𝑇𝑇(�̇�𝒛𝟑𝟑 − �̇�𝒛𝟐𝟐)
⋮

(�̇�𝒛𝑵𝑵 − �̇�𝒛𝑵𝑵−𝟏𝟏)𝑇𝑇(�̇�𝒛𝑵𝑵 − �̇�𝒛𝑵𝑵−𝟏𝟏)]
 
 
 
            (19)  

With the above acceleration constraints, the equation 

of motion of system (2) becomes 

�̈�𝒄 = 𝑭𝑭 + 𝑨𝑨+(𝒄𝒄)[𝒃𝒃(�̇�𝒄)− 𝑨𝑨(𝒄𝒄)𝑭𝑭]              (20) 

Where 𝑨𝑨+ is the pseudo-inverse of AA.  By solving the 

above ordinary differential equation, we generate the 

obstacle avoidance path with minimum turn radius 

and equal edge lengths. This method has an 

advantage of applying potential fields only to the 

chain nodes instead of applying at each point of the 

environment. If the local map of the environment is 

very large, the classical ordinary potential field 

methods consume lot of time. The second advantage 

is that, this approach can also be used to generate 

avoidance path for the dynamic obstacles. 

 
 

 
 

When compared with other keyframe-based SLAM 

techniques, the ORB-SLAM has the following 

advantages, a) the method uses same features for all 

tasks of tracking, mapping, re-localization and loop 

closing. The use of ORB features allows real time 

performance without GPU, b) Real time camera 

relocalization even when there is a significant 

invariance to view point and illumination. c) 

Automatic map initialization for planar and non-

planar scenes based on model selection. The ORB-

SLAM uses four threads running in parallel, 1) 

Tracking thread, 2) Local Mapping thread, 3) Loop 

closing thread and 4) Viewer thread. The overall 

process is shown in Figure-1 and briefly explained 

in the Table-1. As stated in [7], the accuracy of the 

system is less than below 1cm in indoor 

environments and of a few meters in outdoor 

environments. This is the most reliable and complete 

solution to monocular-SLAM. The map is updated 

with new 3D points whenever a keyframe from the 

tracking thread is received. If the current frame is 

not a keyframe, the tracked features are used as 

measurements for the corresponding 3D points to 

improve the depth accuracy. The mapping thread is 

running at lower rate than tracking thread, i.e. it 

executes at a keyframe rate instead of camera frame 

rate. So the costly (computation power) extraction of 

environment information from the images is done in 

the mapping thread, this helps to get the real-time 

pose output at camera frame rate (20~30 frames/sec) 

from tracking thread. The mapping thread provides 

the obstacles position information directly to the path 

planning algorithm. 

 

 

Table 1 Explanation of different basic steps in ORB-
SLAM algorithm 

1  
Extract Features and descriptors from initial 

two frames 𝐼𝐼1, 𝐼𝐼2 
2  Match the features in both frames 

3  

Apply RANSAC 

(outlier removal 

and fundamental/ 

homograhy matrix 

estimation) 

Pick randomly 

corresponding features 

in both images. 

4  

Find the 

fundamental/homography 

matrix. 

5  

Check number of inliers 

within certain error 

limits. 

6  

Repeat the above steps 

for max number of 

inliers.  

7  
Extract Essential matrix from 

fundamental/homography matrix. 

8  
Decompose essential matrix to find camera 

rotation matrix and translation vector. 

9  

By taking first frame as keyframe, triangulate 

features in world frame (first keyframe). In 

addition, apply bundle adjustment. 

10  

Take new camera frame and match the 

features with previous frames and remove 

outliers. 

11  
Compute camera pose with PnP algorithm i.e. 

3D-to-2D projection matches. 

12  
Triangulate all new matched features between 

new frame and previous frame.  

13  

Iterate from step 10 to 12 whenever a new 

image is received; Whenever a new keyframe 

is inserted into the map apply bundle 

adjustment in separate (mapping) thread. 

14  

The loop closing thread takes the latest 

keyframe from the mapping thread and tries to 

detect and close loops. 
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In this paper, a major aim of the work is to provide a 

robust and real time process for obstacle detection 

and path planning using the ORB-SLAM approach 

and the chain-based path planning method as 

outlined in Section 4 and 5. Towards this, the chain-

based path planning algorithm is included in the 

viewer thread of ORB-SLAM. In the viewer thread, 

this process is running at lower rate than frame rate 

because ORB-SLAM updates the map only when it 

encounters a new keyframe. When a keyframe is 

received in mapping thread, it triangulates the 3D 

position of the new features by using the pose 

information from tracking thread then it refines the 

pose and features depth estimates using bundle 

adjustment procedure. So the chain-based path 

planner is executed whenever there is a map update 

flag from the ORB-SLAM. By taking the map update 

flag and the full map (3D positions), the obstacle map 

is generated around the current position of the UAV.  

 
Table 2 Chain-based path planning with ORB-SLAM 
outline 

1  

Initialize the local map (5m x 5m) around the 

current position of UAV with ORB-SLAM 

algorithm’s full map and local map. 

2  

 Initialize the chain of way points in front of 

UAV/camera.  

 Let camera position in world coordinates given 

by 𝒛𝒛𝑐𝑐 = [𝑥𝑥, 𝑦𝑦, 𝑧𝑧]. 
 Then chain nodes are given by 𝒄𝒄 = [𝒛𝒛𝒄𝒄 + 4𝒗𝒗, 𝒛𝒛𝒄𝒄 +

8𝒗𝒗, 𝒛𝒛𝒄𝒄 + 12𝒗𝒗, 𝒛𝒛𝒄𝒄 + 16𝒗𝒗, 𝒛𝒛𝒄𝒄 + 20𝒗𝒗]. Where 𝑣𝑣 is the 

current velocity of the UAV. 

3  

When ORB-SLAM builds the map of the 

environment locally (mapping thread), the chain-

based path planning algorithm checks for collision 

detection with the chain nodes. 

4  

If obstacles (3D voxels with threshold volume) 

are within the threshold distance from the chain 

nodes, apply the procedure given in section-2. 

5  Move the UAV/camera towards first chain node. 

6  

When UAV/camera is near to first node delete it 

and extend the chain with another node at the end 

in the direction of last edge. 

 

Here the sparse map points are assumed to be 3D 

voxels having certain threshold volume. The scale 

information of the monocular-SLAM is provided with 

user interface by estimating the depth of objects in 

front of the camera at the initialization phase. This 

process is further outlined in Table-2. 

 

 

 
For the simulation of chain-based path planning 

algorithm, a map of city is simulated in Matlab with 

building length and width of 100m and random 

heights. The assumption for Matlab simulation is that 

the UAV can able to build the local map using the 

vision-based techniques, which has been shown as 

blue color circle around the UAV in figure-6. For 

every iteration, the obstacle positions within the 

local map are given as input for the chain-based path 

planning algorithm. Using this positions, first a 

collision check is performed at each and every node 

of chain. If obstacles are within certain threshold 

range, apply the chain-based path planning algorithm.  
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Fig. 6 Simulation results of Chain-Based path planner at 
different time instants (from top to bottom column wise). 
Here a chain of ten way points are generated with blue 
color circles on which different types of forces are acting, 
static obstacles (buildings) are shown in magenta with 
top blue color and the pink color dotted line indicates the 
traversed path. The corresponding videos of the 
experiments can be found in the following links: 
https://youtu.be/Ex7SRJI8uiY, https://youtu.be/k-
rYVg0kF2U and https://youtu.be/VXpgs1_G0D0 
 

The path managing (dubins path), path following 

and guidance models for the fixed wing UAV 

are adopted from the text book [29]. The 

simulation results are shown in the Figure-6 for 

different scenarios at different time instants, 

where the chain is shown as blue color small 

circles in front of UAV, the traversed path is 

shown as pink color dotted line and static 

obstacles (buildings) are shown in magenta with 

top as blue color. 

The Monocular ORB-SLAM experiments are 

conducted in a laptop having Intel i7 processor with 

8GB RAM and 2.8GHz speed. The laptop is attached 

with a Logitech camera with 640×480 resolution and 

other equipment as shown in figure-7.  

 

 
Fig. 7 Hardware setup for the real-world experiments on 
ORB-SLAM and chain-based path planning.  

The camera is moving in a circular trajectory. The 

generated map and the trajectory while experiment 

is conducting are shown in figure-8. The camera 

intrinsic parameters are pre-calibrated with Matlab 

calibration toolbox. The full trajectory along with the 

map are plotted in offline is shown in figure-9. The 

generated trajectory from ORB-SLAM is compared 

with the optitrack [30] position values. The markers 

of optitrack system are attached to the laptop, which 

helps to estimate the 6DOF motion of the rigid body 

at high rate (200Hz) with millimeter accuracy. The 

snapshot of motive software for the optitrack system 

(after calibration) with its 12 high speed cameras are 

shown in figure-10. Here, we compare the Euclidian 

position change from the reference point selected at 

particular instant of time and position from both 

SLAM and optitrack systems. The optitrack position 

values are receiving in the laptop via the xbee 

modules as shown in the figure-7. The position 

change from an arbitrary reference points of both 

ORB-SLAM and ground truth optitrack are shown in 

the figure-11.  

 

 
Fig. 8 The top left figure shows the current image with 
extracted and tracked ORB features from tracking thread. 
The top right figure shows the secondary camera image 
for external view on the experiment. The bottom one is 
the generated map and camera poses estimated by the 
ORB-SLAM. This experiment is used for the evaluation 
for the estimated trajectory with ground truth trajectory 
from optitrack system. The experiment video can be 
found by the link https://youtu.be/qkynUEBxcuk. 
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Fig. 9 The final estimated monocular-camera based ORB-
SLAM trajectory and environment map of the above 
experiment. 

 

From the above figures, we conclude that the 

position estimates and map points meet the required 

accuracy (position error is within 1m range) range 

for the obstacle avoidance algorithm. 

The real-data experiments on chain-based path 

planning with ORB-SLAM is shown in Figure-12 and 

its accompanying video link is given in the figure. In 

this experiment, the camera is moved manually 

towards the waypoints and the chain is continuously 

repelling from the obstacles coming from the SLAM 

map (when the mapping thread adds the 3D points). 

These experiments are conducted in a lab 

environment in near real time scenario, where the 

ORB-SLAM is reconstructing the monitor and 

keyboard in front of the camera and the chain-based 

path planer generates a path to avoid these obstacles.  

 

 
Fig. 10 The snapshot of the motive software for the 
optitrack system. The rigid body under experiment can be 
seen in the middle with a triangular shape. The 12 high-
speed cameras are distributed around the configuration 
space volume for the maximum coverage. The position 
and orientation estimation of the rigid body can be seen 
on the right side of the figure. 
 

 

Fig. 11 The comparison between the estimated camera 
positions from the ORB-SLAM with optitrack positions. 
Since the reference frames of both systems are different, 
the Euclidean norm on the position change with respect 
to a reference points at same instant of time and position 
from both system are calculated. 

 

The chain nodes are continuously getting more 

repulsion force from the obstacles as the mapping 

module adds the more 3D points. At the initial stage, 

we generated the waypoints exactly in front of the 

camera. The first part of the figure-12 shows the 

quick repulsion from the obstacles. Since at the 

initial stage, the camera velocity is almost zero. So 

the camera can take quick turn towards the left side, 

this can be seen from the figure first part. While 

camera is in motion, the path planner is able to take 

velocity constraints (i.e. minimum turn radius with 

given velocity), which can be seen as a more 

straitening force in the next parts of the figure-12 

(waypoints are in front of the present orientation of 

camera). Since the camera is manually moved 

towards the chain nodes, the velocity along the 

edges is very small (in the order of ~1m). So in the 

last part of the figure-12 is having more turn radius 

between the first and second edge. From this, we 

conclude that, the chain-based path planner with 

ORB-SLAM is able to generate real-time feasible 

obstacle avoidance paths with less complexity in the 

potential fields generation. The limitations and 

further improvements in the proposed method is 

discussed in the section-7. 

 

 
Fig. 12 Real Time Path Generation at Different Time 
Instants with ORB-SLAM (The chain of way points are 
indicated with Pink color spears, The camera is 
represented by green box, obstacles in the current frame 
are indicated with red color dots and past frames 
obstacles are indicated with black color dots). This 
experiment video can be found in the link: 
https://youtu.be/EpFHhlDZwDI 
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In this paper, we have implemented a near real 

time UAV navigation in GPS denied environments for 

obstacle avoidance with vision as primary sensor for 

mapping the environment and localizing the UAV 

position in the environment. We have used the chain-

based path planning approach based on potential 

fields to avoid the obstacles in the environment. We 

addressed the two issues related with chain-based 

path planning for urban environments. The entire 

algorithm is integrated in ORB-SLAM method to get 

the map of the environment and also for the position 

of UAV purely from onboard sensors. 

 

  
 

The problems with sparse map from ORB-SLAM is, 

1) It detects only the point features in the given 

images, which is not sufficient for detecting obstacle 

boundary and 2) If there is no feature in the image it 

treats as no obstacle, which will be the wrong choice 

if UAV is near to the wall where no features are 

found. The first problem is addressed in this paper 

with an assumption of 3D voxels around the point 

features. However, this is not sufficient for the 

accurate boundary detection for the obstacles. The 

second problem can be omitted in the outside urban 

environments because features are definitely find in 

these environments. Therefore, we are concentrating 

on the first issue of sparse map for detecting the 

boundaries of obstacles for effective avoidance 

maneuvers. 
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Table A1 Hyperlinks to multimedia extensions on real-
time experiments. 

Video hyperlink Description 
https://www.youtube.co
m/watch?v=qkynUEBx
cuk 

Indoor experiment video of 
ORB-SLAM having ground 
truth comparison. 

https://www.youtube.co
m/watch?v=zZzJ0ON6l
2Y 

Indoor experiment video of 
ORB-SLAM showing the 
reconstructed map of the lab and 
camera positions. 

https://www.youtube.co
m/watch?v=ka_OWRW
K-o0 

Outdoor experiment video of 
ORB-SLAM. This shows the 
loop closing and re-tracking 
capabilities of ORB-SLAM. Re-
tracking at 2:54-2:57min and 
loop closing at 6:35 –6:44min. 

https://www.youtube.co
m/watch?v=EpFHhlDZ
wDI 

Chain-based path planner with 
ORB-SLAM. 

 


