• Title/Summary/Keyword: CSA-04

Search Result 17, Processing Time 0.031 seconds

Maximum Shear Reinforcement of RC Beams using High Strength Concrete (고강도 콘크리트를 사용한 RC보의 최대철근비)

  • Lee, Jung-Yoon;Hwang, Hyun-Bok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.839-842
    • /
    • 2008
  • The ACI 318-05 code requires the maximum amount of shear reinforcement in reinforced concrete (RC) beams to prevent possible sudden shear failure due to over reinforcement. The design equations of the maximum amount of shear reinforcement provided by the current four design codes, ACI 318-05, CSA-04, EC2-02, and JCI-99, differ substantially from one another. The ACI 318-05, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take into account the influence of the concrete compressive strength. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-05. This paper presents the effects of shear reinforcement ratio and compressive strength of concrete on the maximum shear reinforcement in reinforced concrete beams. Ten RC beams having various shear reinforcement ratio were tested. Although the test beams were designed to have much more amount of shear reinforcement than that required in the ACI 318-05 code, all beams failed due to web concrete crushing after the stirrups reached the yield strain.

  • PDF

Evaluations of the Maximum Shear Reinforcement of Reinforced Concrete Beams (철근콘크리트 보의 최대 전단철근비에 대한 평가)

  • Hwang, Hyun-Bok;Moon, Cho-Hwa;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.6
    • /
    • pp.719-727
    • /
    • 2009
  • The requirements of the maximum shear reinforcement in the EC2-02 and CSA-04, which are developed based on the truss model, are quite different to those in the ACI-08 code and AIJ-99 code, which are empirical equations. The ACI 318-08, CSA-04, and EC2-02 codes provide an expression for the maximum amount of shear reinforcement ratio as a function of the concrete compressive strength, but Japanese code does not take the influence of the concrete compressive strength into account. For high strength concrete, the maximum amount of shear reinforcement calculated by the EC2-02 and CSA-04 is much greater than that calculated by the ACI 318-08. Ten RC beams having various shear reinforcement ratios were tested and their corresponding shear stress-shear strain curves and failure modes were compared to the predicted ones obtained by the current design codes.

Impossible Differential Cryptanalysis on DVB-CSA

  • Zhang, Kai;Guan, Jie;Hu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1944-1956
    • /
    • 2016
  • The Digital Video Broadcasting-Common Scrambling Algorithm is an ETSI-designated algorithm designed for protecting MPEG-2 signal streams, and it is universally used. Its structure is a typical hybrid symmetric cipher which contains stream part and block part within a symmetric cipher, although the entropy is 64 bits, there haven't any effective cryptanalytic results up to now. This paper studies the security level of CSA against impossible differential cryptanalysis, a 20-round impossible differential for the block cipher part is proposed and a flaw in the cipher structure is revealed. When we attack the block cipher part alone, to recover 16 bits of the initial key, the data complexity of the attack is O(244.5), computational complexity is O(222.7) and memory complexity is O(210.5) when we attack CSA-BC reduced to 21 rounds. According to the structure flaw, an attack on CSA with block cipher part reduced to 21 rounds is proposed, the computational complexity is O(221.7), data complexity is O(243.5) and memory complexity is O(210.5), we can recover 8 bits of the key accordingly. Taking both the block cipher part and stream cipher part of CSA into consideration, it is currently the best result on CSA which is accessible as far as we know.

Generalized load cycles for dynamic wind uplift evaluation of rigid membrane roofing systems

  • Baskaran, A.;Murty, B.;Tanaka, H.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.383-411
    • /
    • 2011
  • Roof is an integral part of building envelope. It protects occupants from environmental forces such as wind, rain, snow and others. Among those environmental forces, wind is a major factor that can cause structural roof damages. Roof due to wind actions can exhibit either flexible or rigid system responses. At present, a dynamic test procedure available is CSA A123.21-04 for the wind uplift resistance evaluation of flexible membrane-roofing systems and there is no dynamic test procedure available in North America for wind uplift resistance evaluation of rigid membrane-roofing system. In order to incorporate rigid membrane-roofing systems into the CSA A123.21-04 testing procedure, this paper presents the development of a load cycle. For this process, the present study compared the wind performance of rigid systems with the flexible systems. Analysis of the pressure time histories data using probability distribution function and power spectral density verified that these two roofs types exhibit different system responses under wind forces. Rain flow counting method was applied on the wind tunnel time histories data. Calculated wind load cycles were compared with the existing load cycle of CSA A123.21-04. With the input from the roof manufacturers and roofing associations, the developed load cycles had been generalized and extended to evaluate the ultimate wind uplift resistance capacity of rigid roofs. This new knowledge is integrated into the new edition of CSA A123.21-10 so that the standard can be used to evaluate wind uplift resistance capacity of membrane roofing systems.

Evaluation on the Maximum Yield Strength of Steel Stirrups in Reinforced Concrete Beams (철근콘크리트 보에 사용된 전단보강철근의 항복강도 제한에 대한 평가)

  • Lee, Jin-Eun;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.685-693
    • /
    • 2012
  • The yield strength of shear reinforcement is restricted in the present design codes. In this study, the possibility of the yield strength increase in shear reinforcement is evaluated according to ACI318-08, EC2-02 and CSA-04 by comparing the experimental and calculated results. Three cases were used to analyze the shear strength of the beam. One had no limitation in the yield strength of shear reinforcement, another had restriction on the yield strength of shear reinforcement, and the other had a restriction on the yield strength of shear reinforcement and the shear reinforcement ratio. The study results showed that the case with unlimited shear reinforcement yield strength predicted the test result better than other two cases. Even though the rebar yield strength higher than the strength required in present code was applied to existing shear design equation, the result was reasonable. Therefore, the design equation seemed to be appropriate even if the high-strength shear reinforcement is used in practice based on the existing shear design method.

Durability and Performance Requirements in Canadian Cement and Concrete Standards (캐나다 시멘트 및 콘크리트의 내구성 및 제성능에 대한 규준)

  • Hooton, R.D.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.5-21
    • /
    • 2006
  • Traditional standards and specifications for concrete have largely been prescriptive, (or prescription-based), and can sometimes hinder innovation and in particular the use of more environmentally friendly concretes by requiring minimum cement contents and SCM replacement levels. In December 2004, the Canadian CSA A23.1-04 standard was issued which made provisions (a) for high-volume SCM concretes, (b) added new performance requirements for concrete, and (c) clearly outlined the requirements and responsibilities for use in performance-based concrete specifications. Also, in December 2003, the CSA A3000 Hydraulic Cement standard was revised. It (a) reclassified the types of cements based on performance requirements, with both Portland and blended cements meeting the same physical requirements, (b) allows the use of performance testing for assessing sulphate resistance of cementitious materials combinations, (c) includes an Annex D, which allows performance testing of new or non-traditional supplementary cementing materials. From a review of international concrete standards, it was found that one of the main concerns with performance specifications has been the lack of tests, or lack of confidence in existing tests, for judging all relevant performance concerns. Of currently used or available test methods for both fresh, hardened physical, and durability properties, it was found that although there may be no ideal testing solutions, there are a number of practical and useful tests available. Some of these were adopted in CSA A23.1-04, and it is likely that new performance tests will be added in future revisions. Other concerns with performance standards are the different perspectives on the point of testing for performance. Some concrete suppliers may prefer processes for both pre-qualifying the plant, and specific mixtures, followed only with testing only 'end-of-chute' fresh properties on-site. However, owners want to know the in-place performance of the concrete, especially with high-volume SCM concretes where placing and curing are important. Also, the contractor must be aware of, and share the responsibility for handling, constructability, curing, and scheduling issues that influence the in-place concrete properties.

  • PDF

Compressive, shear and torsional strength of beams made of self-compacting concrete

  • Mazloom, Moosa;Saffari, Amirali;Mehrvand, Morteza
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.935-950
    • /
    • 2015
  • The aim of this study is to provide experimental data regarding the compressive, shear and torsional strength of self-compacting concrete (SCC) used in rectangular beams, and then comparing the results with the equations presented by the CSA A23.3-04 and ACI 318-11. In fact, the gathered information in this field is quite useful for calibrating the computer models of other researchers. The other goal of this study was to investigate the effects of silica fume and superplasticizer dosages on the mechanical properties of SCC. In this research, SCC is made based on 16 different type mixing layout. Also two normal concrete (NC) or vibrating concrete are constructed to compare the results of SCC and NC. This work concentrated on concrete mixes having water/binder ratios of 0.45 and 0.35, which contained constant total binder contents of $400kg/m^3$ and $500kg/m^3$, respectively. The percentages of silica fume that replaced cement were 0% and 10%. The superplasticizer dosages utilized in the mixtures were 0.4%, 0.8%, 1.2% and 1.6% of the weight of cement. Beam dimensions used in this test were $30{\times}30{\times}120cm^3$. The results of this research indicated that shear and torsional strength of SCC beams to be used in computer models can be calculated utilizing the equations presented in CSA A23.3-04 and ACI 318-11.

Comparison of Physicochemical Properties of Starch Acetates Prepared by Conventional, Preheat Treatment and Extrusion Process (습식법과 예열처리법 및 Extrusion 공정에 의해 제조한 초산전분의 이화학적 성질비교)

  • Kim, Chong-Tai;Ryu, Gi-Hyung;Kim, Dong-Chul;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.659-667
    • /
    • 1990
  • Starch acetates were prepared by conventional method, preheat treatment, and extrusion process through acetylation of corn starch with acetic anhydride and their physicochemical properties were investigated. The optimal conditions of the acetylation of starch by conventional method(CSA) was found that starch concentration was 30%, reaction temperature $35^{\circ}C$ and pH 8.5. With increasing the molar ratio of acetic anhydride to anhydrous glucose unit from 0.03 to 0.20, DS(Degree of substitution) value of corn starch acetate prepared at the optimum condition was increased from 0.019 to 0.080, while the acetylation efficiency was decreased from 31.6% to 20.5%. In the case of the preheated (gelatinized), then acetylated starch(PSA), DS value was increased from 0.027 to 0.04 at the fixed molar ratio of the acetic anhydride with increasing preheating temperature from $60^{\circ}C\;to\;90^{\circ}C$. The DS was low as 0.02 in the case of starch acetate prepared by extrusion process(WESA). The CSA and PSA showed lowering gelatinization temperature and enthalpy than raw corn starch with increasing DS. All of starch acetates showed the increased degree of transparency, the decreased lightness and the increased yellowness as compared to the raw corn starch. WESA showed lower apparent viscosity and more close to the characteristic of the Newtonian fluid than CSA and PSA. Intrinsic viscosity was reduced in CSA and WESA, although PSA has a slightly higher one than raw corn starch. The rate of retrogradation of the gels was retarded in all starch acetates.

  • PDF

Evaluation of the Maximum Yield Strength of Steel Stirrups and Shear Behavior of RC Beams (철근콘크리트 보의 전단보강철근의 최대 항복강도 및 전단거동 평가)

  • Lee, Jung-Yoon;Choi, Im-Jun;Kang, Ji-Eun
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.711-718
    • /
    • 2010
  • The requirement of the maximum yield strength of shear reinforcement in the KCI-07 code is quite different to those in the ACI-08 code, EC2-02, CSA-04, and JSCE-04 codes. Eighteen RC beams having high strength shear reinforcement were tested. Test results indicated that even if the yield strength of shear reinforcement in beams was much greater than the maximum yield strength required by the KCI-07 design code, the shear reinforcement of these beams reached their yield strains. Furthermore, the shear strengths of tested beams increased almost linearly with the increase of the amount of shear reinforcement. In addition, larger numbers of diagonal cracks developed in the web of the beam having greater yield strength than the beams having lower yield strength of shear reinforcement. The maximum crack width of the beam having high strength shear reinforcement was approximately the same to the crack with of the beam having normal strength shear reinforcement.

Design in shear of reinforced concrete short columns

  • Moretti, M.L.;Tassios, T.P.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.265-283
    • /
    • 2013
  • This research was prompted by the paucity of specific code provisions regarding the design of short columns for shear. The purpose of this paper was to investigate whether the use of the normal shear design procedure of various codes may or may not be applied to reliably calculate the shear strength of short columns. Provisions of the codes American ACI 318M-08, Canadian CSA A23.3-04, Japanese AIJ Guidelines, New Zealand NZS 3101, European EN 1998 (EC8) parts 1 and 3, combined with EN 1992-1-1 (EC2), and draft fib Model Code 2010, as well as a strut-and-tie model are applied on short columns tested under cyclic loading that failed in shear. Actual shear resistances are compared to predictions, and the resulting shortcomings of the codes are identified. EN1998-3 appears to be the only code among those considered that may be reliably applied to estimate the shear resistance of short columns. Further, the proposed strut-and tie model can be a useful tool for the detailed design and assessment of short columns.