• Title/Summary/Keyword: CRISPR-Cas9

Search Result 134, Processing Time 0.028 seconds

Biomedical Application of Gene Editing (유전자 교정 기술의 생의학적 응용)

  • Ju-Chan, Park;Hyeon-Ki, Jang
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The CRISPR system has revolutionized gene editing field. Cas9-mediated gene editing such as Indel induction or HDR enable targeted gene disruption or precise correction of mutation. Moreover, CRISPR-based new editing tools have been developed such as base editors. In this review, we focus on gene editing in human pluripotent stem cells, which is principal technique for gene correction therapy and disease modeling. Pluripotent stem cell-specific drug YM155 enabled selection of target gene-edited pluripotent stem cells. Also, we discussed base editing for treatment of congenital retina disease. Adenine base editor delivery as RNP form provide an approach for genetic disease treatment with safe and precise in vivo gene correction.

Innate Color Preference of Zebrafish and Its Use in Behavioral Analyses

  • Park, Jong-Su;Ryu, Jae-Ho;Choi, Tae-Ik;Bae, Young-Ki;Lee, Suman;Kang, Hae Jin;Kim, Cheol-Hee
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.750-755
    • /
    • 2016
  • Although innate color preference of motile organisms may provide clues to behavioral biases, it has remained a longstanding question. In this study, we investigated innate color preference of zebrafish larvae. A cross maze with different color sleeves around each arm was used for the color preference test (R; red, G; green, B; blue, Y; yellow). The findings showed that 5 dpf zebrafish larvae preferred blue over other colors (B > R > G > Y). To study innate color recognition further, tyrosinase mutants were generated using CRISPR/Cas9 system. As a model for oculocutaneous albinism (OCA) and color vision impairment, tyrosinase mutants demonstrated diminished color sensation, indicated mainly by hypopigmentation of the retinal pigment epithelium (RPE). Due to its relative simplicity and ease, color preference screening using zebrafish larvae is suitable for high-throughput screening applications. This system may potentially be applied to the analysis of drug effects on larval behavior or the detection of sensory deficits in neurological disorder models, such as autism-related disorders, using mutant larvae generated by the CRISPR/Cas9 technique.

A Maternal Transcription Factor, Junction Mediating and Regulatory Protein is Required for Preimplantation Development in the Mouse

  • Lin, Zi-Li;Li, Ying-Hua;Jin, Yong- Xun;Kim, Nam-Hyung
    • Development and Reproduction
    • /
    • v.23 no.3
    • /
    • pp.285-295
    • /
    • 2019
  • Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. The actin-regulatory activity of JMY is based on a cluster of three actin-binding Wiskott-Aldrich syndrome protein homology 2 (WH2) domains that nucleate actin filaments directly and promote nucleation of the Arp2/3 complex. In addition to these activities, we examined the activity of JMY generation in early embryo of mice carrying mutations in the JMY gene by CRISPR/Cas9 mediated genome engineering. We demonstrated that JMY protein shuttled expression between the cytoplasm and the nucleus. Knockout of exon 2, CA (central domain and Arp2/3-binding acidic domain) and NLS-2 (nuclear localization signal domain) on the JMY gene by CRISPR/Cas9 system was effective and markedly impeded embryonic development. Additionally, it impaired transcription and zygotic genome activation (ZGA)-related genes. These results suggest that JMY acts as a transcription factor, which is essential for the early embryonic development in mice.

Recent progress in using Drosophila as a platform for human genetic disease research

  • Wan Hee Yoon
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.39-45
    • /
    • 2023
  • As advanced sequencing technologies continue to uncover an increasing number of variants in genes associated with human genetic diseases, there is a growing demand for systematic approaches to assess the impact of these variants on human development, health, and disease. While in silico analyses have provided valuable insights, it is essential to complement these findings with model organism studies to determine the functional consequences of genetic variants in vivo. Drosophila melanogaster is an excellent genetic model for such functional studies due to its efficient genetic technologies, high gene conservation with humans, accessibility to mutant fly resources, short life cycles, and cost-effectiveness. The traditional GAL4-UAS system, allowing precise control of gene expression through binary regulation, is frequently employed to assess the effects of monoallelic variants. Recombinase medicated cassette exchange or CRISPR-Cas9-mediated GAL4 insertion within coding introns or substitution of gene body with Kozak-Gal4 result in the loss-of-function of the target gene. This GAL4 insertion strategy also enables the expression of reference complementary DNA (cDNA) or cDNA carrying genetic variants under the control of endogenous regulatory cis elements. Furthermore, the CRISPR-Cas9-directed tissue-specific knockout and cDNA rescue system provides the flexibility to investigate candidate variants in a tissue-specific and/or developmental-timing dependent manner. In this review, we will delve into the diverse genetic techniques available in Drosophila and their applications in diagnosing and studying numerous undiagnosed diseases over the past decade.

PDAT1 genome editing reduces hydroxy fatty acid production in transgenic Arabidopsis

  • Mid-Eum Park;Hyun Uk Kim
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.86-91
    • /
    • 2024
  • The fatty acids content of castor (Ricinus communis L.) seed oil is 80-90% ricinoleic acid, which is a hydroxy fatty acid (HFA). The structures and functional groups of HFAs are different from those of common fatty acids and are useful for various industrial applications. However, castor seeds contain the toxin ricin and an allergenic protein, which limit their cultivation. Accordingly, many researchers are conducting studies to enhance the production of HFAs in Arabidopsis thaliana, a model plant for oil crops. Oleate 12-hydroxylase from castor (RcFAH12), which synthesizes HFA (18:1-OH), was transformed into an Arabidopsis fae1 mutant, resulting in the CL37 line producing a maximum of 17% HFA content. In addition, castor phospholipid:diacylglycerol acyltransferase 1-2 (RcPDAT1-2), which catalyzes the production of triacylglycerol by transferring HFA from phosphatidylcholine to diacylglycerol, was transformed into the CL37 line to develop a P327 line that produces 25% HFA. In this study, we investigated changes in HFA content when endogenous Arabidopsis PDAT1 (AtPDAT1) of the P327 line was edited using the CRISPR/Cas9 technique. The successful mutation resulted in three independent lines with different mutation patterns, which were transmitted until the T4 generation. Fatty acid analysis of the seeds showed that HFA content decreased in all three mutant lines. These findings indicate that AtPDAT1 as well as RcPDAT1-2 in the P327 line are involved in transferring and increasing HFAs to triacylglycerol.

Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos

  • Park, Dong-Seok;Yoon, Mijung;Kweon, Jiyeon;Jang, An-Hee;Kim, Yongsub;Choi, Sun-Cheol
    • Molecules and Cells
    • /
    • v.40 no.11
    • /
    • pp.823-827
    • /
    • 2017
  • Genome editing using programmable nucleases such as CRISPR/Cas9 or Cpf1 has emerged as powerful tools for gene knock-out or knock-in in various organisms. While most genetic diseases are caused by point mutations, these genome-editing approaches are inefficient in inducing single-nucleotide substitutions. Recently, Cas9-linked cytidine deaminases, named base editors (BEs), have been shown to convert cytidine to uridine efficiently, leading to targeted single-base pair substitutions in human cells and organisms. Here, we first report on the generation of Xenopus laevis mutants with targeted single-base pair substitutions using this RNA-guided programmable deaminase. Injection of base editor 3 (BE3) ribonucleoprotein targeting the tyrosinase (tyr) gene in early embryos can induce site-specific base conversions with the rates of up to 20.5%, resulting in oculocutaneous albinism phenotypes without off-target mutations. We further test this base-editing system by targeting the tp53 gene with the result that the expected single-base pair substitutions are observed at the target site. Collectively, these data establish that the programmable deaminases are efficient tools for creating targeted point mutations for human disease modeling in Xenopus.