• Title/Summary/Keyword: CRF++

Search Result 354, Processing Time 0.023 seconds

Layer Normalized LSTM CRFs for Korean Semantic Role Labeling (Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정)

  • Park, Kwang-Hyeon;Na, Seung-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

Spatial Entities Extraction using Bidirectional LSTM-CRF Ensemble (Bidirectional LSTM-CRF 앙상블을 이용한 공간 개체 추출)

  • Min, Tae Hong;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.133-136
    • /
    • 2017
  • 공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.

  • PDF

Spatial Entities Extraction using Bidirectional LSTM-CRF Ensemble (Bidirectional LSTM-CRF 앙상블을 이용한 공간 개체 추출)

  • Min, Tae Hong;Lee, Jae Sung
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.133-136
    • /
    • 2017
  • 공간 정보 추출은 대량의 텍스트 문서에서 자연어로 표현된 공간 관련 개체 및 관계를 추출하는 것으로 질의응답 시스템, 챗봇 시스템, 네비게이션 시스템 등에서 활용될 수 있다. 본 연구는 한국어에 나타나 있는 공간 개체들을 효과적으로 추출하기 위한 앙상블 기법이 적용된 Bidirectional LSTM-CRF 모델을 소개한다. 한국어 공간 정보 말뭉치를 이용하여 실험한 결과, 기존 모델보다 매크로 평균이 향상되어 전반적인 공간 관계 추출에 유용할 것으로 기대한다.

  • PDF

Layer Normalized LSTM CRFs for Korean Semantic Role Labeling (Layer Normalized LSTM CRF를 이용한 한국어 의미역 결정)

  • Park, Kwang-Hyeon;Na, Seung-Hoon
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.163-166
    • /
    • 2017
  • 딥러닝은 모델이 복잡해질수록 Train 시간이 오래 걸리는 작업이다. Layer Normalization은 Train 시간을 줄이고, layer를 정규화 함으로써 성능을 개선할 수 있는 방법이다. 본 논문에서는 한국어 의미역 결정을 위해 Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델을 제안한다. 실험 결과, Layer Normalization이 적용 된 Bidirectional LSTM CRF 모델은 한국어 의미역 결정 논항 인식 및 분류(AIC)에서 성능을 개선시켰다.

  • PDF

Compound Noun Decomposition by using Bi-LSTM and Linear-chain CRF (양방향 LSTM과 선형체인 CRF를 이용한 복합명사 분해)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.719-720
    • /
    • 2018
  • 복합명사 분해 문제를 태그열 부착 문제로 정의하고 음절 임베딩과 딥러닝을 이용하여 복합명사를 분해하는 방법을 제안한다. 임베딩 방식으로는 음절 단위로 복합명사에 출현한 음절들을 벡터 공간에 표현하고 양방향 LSTM과 선형체인(linear-chain) CRF를 이용하여 복합명사 분해 태그를 부착하여 복합명사를 단위명사들로 분해하였다.

CRFs for Korean Morpheme Segmentation and POS Tagging (CRF에 기반한 한국어 형태소 분할 및 품사 태깅)

  • Na, Seung-Hoon;Yang, Seong-Il;Kim, Chang-Hyun;Kwon, Oh-Woog;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2012.10a
    • /
    • pp.12-15
    • /
    • 2012
  • 본 논문은 한국어 형태소 분할 및 품사 태깅을 위해 조건부 랜덤 필드 (CRF: conditional random field)에 기반한 방식을 제안한다. 제안 방법은 1) 형태소 분할 단계 2) 품사 태깅 단계 3) 복합형태소 분할 및 태깅 단계의 세 단계로 이루어진다. 처음 두 단계는 CRF방법에 기반을 두고, 세 번째 단계에서는 일반화된 HMM (lattice-HMM)을 활용한다. 제안 방법은 세종 말뭉치 코퍼스에서 5-fold cross-validation로 평가한 결과, 약 96%의 품사 태깅 성능을 보여주었다.

  • PDF

Sentiment Analysis for Korean Product Review Using Stacked Bi-LSTM-CRF Model (Stacked Bi-LSTM-CRF 모델을 이용한 한국어 상품평 감성 분석)

  • Youn, Jun Young;Park, Jung Ju;Kim, Do Won;Min, Tae Hong;Lee, Jae Sung
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.633-635
    • /
    • 2018
  • 최근 소셜 커머스 데이터를 이용하여 상품에 대한 소비자들의 수요와 선호도 등을 조사하는 등의 감성분석 연구가 활발히 진행되고 있다. 본 연구에서는 Stacked Bi-LSTM-CRF 모델을 이용하여 한국어의 복합적인 형태로 이루어지는 감성표현에 대하여 어휘단위로 감성분석을 진행하고, 상품의 세부주제(특징, 관심키워드 등)를 추출하여 세부주제별 감성 분석을 할 수 있는 방법을 제안한다.

  • PDF

Novel CRF1-receptor Antagonists from Pulsatilla koreana Root

  • Li, Wei;Noh, Hyojin;Lee, Sunghou;Lee, Min Ho;Lee, Eun Young;Kang, Sangjin;Kim, Young Ho
    • Natural Product Sciences
    • /
    • v.20 no.4
    • /
    • pp.281-284
    • /
    • 2014
  • In this study, twenty-one oleanane-type triterpenoid saponins were isolated from a methanol extract of the roots of Pulsatilla koreana. Antagonistic activities were measured in these compounds by the aequorin based cellular functional assay system for the corticotropin releasing factor receptor (CRF1). Of them, compounds 7 - 10 showed the highest degree of CRF1 inhibition further at the concentration of $10{\mu}M$. Moreover, by the analysis based on the structure-activity relationship of isolated saponins, a sugar chain at C-3 and a carboxyl group at C-28, as well as a methyl group at C-23 seems to be key functional elements. To our knowledge, this is the first report on CRF1 inhibition of saponins from P. koreana.

Using CRF (Conditional Random Fields) to Predict Phrase Breaks in Korean (CRF를 이용한 한국어 운율 경계 추정)

  • Kim, Seung-Won;Kim, Byeong-Chang;Jeong, Min-Woo;Lee, Gary Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.134-138
    • /
    • 2005
  • 본 논문은 한국어 TTS(Text-To-Speech)에서 운율 경계를 추정하는 문제를 클래스 분류문제로 보고 CRF(Conditional Random Fields)를 적용하여 운율 경계를 추정하였다. 우리는 품사와 운율 경계로 구성된 말뭉치를 사용하여 품사, 어휘, 단어의 길이, 문장에서의 단어 위치와 같은 다양한 속성의 언어적 자질을 추출하여 CRF를 훈련시켰으며, 자질들을 서로 조합하여 최고의 성능을 보이는 자질 집합을 골랐다 또한 가우스 평활 (Gaussian Smoothing)을 적용하여 데이터의 희소성 문제를 줄였다. 실험 결과에서 본 방법이 기존의 방법보다 성능이 좋을 뿐만 아니라 운율 경계를 추정하기 위한 자질을 독립시켰기 때문에 다른 시스템과의 호환성도 높다는 것을 알 수 있었다.

  • PDF

Biomedical Terminology Recognition using CRF (CRF를 이용한 생물/의학 전문용어 인식)

  • Bae, Young-Jun;Kim, Jae-Hoon;Ock, Cheol-Young;Choi, Yun-Soo
    • Annual Conference on Human and Language Technology
    • /
    • 2009.10a
    • /
    • pp.87-91
    • /
    • 2009
  • 전문용어의 수가 급증하면서 전문용어를 자동으로 인식하는 연구가 활발히 진행되고 있다. 전문용어를 인식하기 위해서 전문용어의 범위를 정한 뒤 그 전문용어의 분야를 선택해야 한다. 본 논문에서는 생물/의학 사전정보와 CRF(Conditional Random Fields) 기계학습 기법을 사용하여 연구를 진행한다. 기계학습을 위한 자질로 품사, 접사, 대소문자, 숫자, 특수문자, 단서어휘 등을 사용한다. 특히 단서어휘와 사전정보를 중요한 요소로 생각하여, 3가지 방법으로 나누어 실험한다. 총 분야의 개수는 7개이며, 각 분야별로 정확률, 재현율, F-measure를 측정한다. 경계인식은 83.92%의 정확률, 96.42%의 재현율, 89.73의 F-measure가 결과로 나타났고, 분야분류는 79.29%의 정확률, 91.06%의 재현율, 84.77%의 F-measure가 결과로 나타났다.

  • PDF