• Title/Summary/Keyword: CPW-Line

Search Result 139, Processing Time 0.022 seconds

CPW Directional Couplers with Enhanced Directivity by Using Expanded Slot Width as Compensation Structures (Slot 폭의 조절을 이용하여 향상된 방향성을 갖는 CPW방향성 결합기의 설계)

  • 이창언;최경민;박정훈;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.4
    • /
    • pp.368-378
    • /
    • 2004
  • In this paper, we proposed the compensation structures for the enhanced directivity of CPW(Coplanar waveguide) directional couplers with finite-extent backed conductor. The proposed compensation structures are. realized by expanding the slot width between signal line and ground plane in center region of couplers. The CPW couplers with expanded slot have the same phase velocity for even and odd mode because of added inductance and changed capacitance appropriately, so the enhanced directivity is accomplished. The designed CPW directional couplers have good directivity and matching characteristic at center frequency in simulation and measurement.

Modeling of Capacitive Coplanar Waveguide Discontinuities Characterized with a Resonance Method (공진 주파수 측정방법을 이용한 Coplanar Waveguide 용량성 불연속 구조 설계)

  • Kim, Dong-Young;Jee, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2001.06b
    • /
    • pp.181-184
    • /
    • 2001
  • A coplanar waveguide(CPW) on a dielectric substrate consists of a center strip conductor with semi-infinite ground planes on either side. This type of waveguide offers several advantages over microstrip line. It facilitates easy shunt as well as series mounting of active and passive devices. It eliminates the need for wraparound and via holes, and it has a low radiation loss. These, as well as several other advantages, make CPW ideally suited for microwave integrated circuit applications. However, very little information is available in the literature on models for CPW discontinuities. This lack of sufficient discontinuity models for CPW has limited the application of CPW in microwave circuit design. We presented for the characteristics of coplanar waveguide open end capacitance and series gap capacitance. Measurements by utilizing the resonance method were made and the experimental data confirmed the validity of theories. The relationships between the CPW capacitances and the physical dimensions were studied.

  • PDF

Basic Study on RF Characteristics of Thin-Film Transmission Line Employing ML/CPW Composite Structure on Silicon Substrate and Its Application to a Highly Miniaturized Impedance Transformer

  • Jeong, Jang-Hyeon;Son, Ki-Jun;Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • A thin-film transmission line (TFTL) employing a microstrip line/coplanar waveguide (ML/CPW) was fabricated on a silicon substrate for application to a miniaturized on-chip RF component, and the RF characteristics of the device with the proposed structure were investigated. The TFTL employing a ML/CPW composite structure exhibited a shorter wavelength than that of a conventional coplanar waveguide and that of a thin-film microstrip line. When the TFTL with the proposed structure was fabricated to have a length of ${\lambda}/8$, it showed a loss of less than 1.12 dB at up to 30 GHz. The improvement in the periodic capacitance of the TFTL caused for the propagation constant, ${\beta}$, and the effective permittivity, ${\varepsilon}_{eff}$, to have values higher than those of a device with only a conventional coplanar waveguide and a thin film microstrip line. The TFTL with the proposed structure showed a ${\beta}$ of 0.53~2.96 rad/mm and an ${\varepsilon}_{eff}$ of 22.3~25.3 when operating from 5 to 30 GHz. A highly miniaturized impedance transformer was fabricated on a silicon substrate using the proposed TFTL for application to a low-impedance transformation for broadband. The size of the impedance transformer was 0.01 mm2, which is only 1.04% of the size of a transformer fabricated using a conventional coplanar waveguide on a silicon substrate. The impedance transformer showed excellent RF performance for broadband.

SIR CPW Bandpass Filter with Folded Feed Structure for Suppressing Spurious Harmonics (고조파 억압을 위한 접힌 피드 구조를 갖는 SIR CPW 대역통과 여파기)

  • 박광선;이창언;천동완;이진택;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.159-164
    • /
    • 2004
  • In this paper, we have proposed the folded feed structure for the spurious harmonic suppression and we have designed the SIR CPW bandpass filter using this feed structure. The characteristic of the proposed feed structure was similar to that of the lowpass filter has wide stopband region and this can be used usefully to the spurious harmonic suppression of the bandpass filter. From the simulation and the measurement result, SIR CPW bandpass filter with folded feed structure has good harmonic suppression characteristics up to 5.8 f$\sub$0/ with -20 dB suppression level.

Coplanar Waveguides Fabricated on Oxidized Porous Silicon Air-Bridge for MMIC Application (다공질 실리콘 산화막 Air-Bridge 기판 위에 제작된 MMIC용 공면 전송선)

  • 박정용;이종현
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.285-289
    • /
    • 2003
  • This paper proposes a 10 ${\mu}{\textrm}{m}$ thick oxide air-bridge structure which can be used as a substrate for RF circuits. The structure was fabricated by anodic reaction, complex oxidation and rnicrornachining technology using TMAH etching. High quality films were obtained by combining low temperature thermal oxidation (50$0^{\circ}C$, 1 hr at $H_2O$/O$_2$) and rapid thermal oxidation (RTO) process (105$0^{\circ}C$, 2 min). This structure is mechanically stable because of thick oxide layer up to 10 ${\mu}{\textrm}{m}$ and is expected to solve the problem of high dielectric loss of silicon substrate in RF region. The properties of the transmission line formed on the oxidized porous silicon (OPS) air-bridge were investigated and compared with those of the transmission line formed on the OPS layers. The insertion loss of coplanar waveguide (CPW) on OPS air-bridge was (about 1 dB) lower than that of CPW on OPS layers. Also, the return loss of CPW on OPS air-bridge was less than about - 20 dB at measured frequency region for 2.2 mm. Therefore, this technology is very promising for extending the use of CMOS circuitry to higher RF frequencies.

Design and Analysis on Compact Antenna for Handsets (핸드폰용 소형안테나의 설계 및 해석)

  • Choi, In-Tae;Shin, Ho-Sub
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.5
    • /
    • pp.557-564
    • /
    • 2015
  • In this paper, the compact antenna for handsets is designed using FR-4 substrate for LTE(905-960 MHz), WCDMA(1922.8-2167.2 MHz), DCS(1710.2-1879.8 MHz), US-PCS(1850.2-1989.8 MHz), WLAN(2400-2483 MHz). The CPW line with many advantages and a spiral geometry for miniaturization is proposed. Widths of a spiral line are constant, and three stubs are added to broaden the bandwidth. Lengths and widths of three stubs are gradually changed. And proposed antenna is optimized for VSWR<3, designed, and fabricated. The dimension of this antenna is only $40{\times}30{\times}1mm3$ which is compact. It has been demonstrated by experiment that the compact planar antenna can be used as the mobile communication LTE antenna for 4G.

A Comparison of RF Properties of Bonding Pad in Flip-Chip Packaging (플립 칩 실장에 있어 본딩 패드 패턴의 고주파 특성 비교)

  • 박현식;성규제;김진성;이진구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.27-31
    • /
    • 2003
  • RF characteristics of CPW(coplanar waveguide) pattern with bonding pads used in flip-chip packaging of GaAs is studied in the frequency range of 1 GHz to 35 GHz. Simulation, fabrication and evaluation are performed for the proposed patterns. Measurement results show proposed patterns have similar properties of $S_{11}$below -31 dB and $S_{21}$ above -0.19 dB with typical CPW In addition RF properties are improved with the increase of width of ground line. This indicates CPW structure with bonding pads keeps RF characteristics of typical CPW.

  • PDF

A New CPW Dual Band Wilkinson Power Divider Using Composite Right/Left-Handed Transmission Line (Composite Righg/Left-Hand 전송선로를 이용한 새로운 이중대역의 CPW 윌킨슨 전력 분배기)

  • Zhang, Zufu;Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2015
  • In this paper, a new kind of wideband, low-loss composite right/left-handed (CRLH) transmission line (TL) and a Wilkinson power divider are presented. The TL is composed of a parallel meander inductor and a series cutting capacitor based on coplanar waveguide (CPW) structure. The power divider is designed by substituting the CRLH-TL into the conventional transmission line. The experiment results show that the TL has a good agreement with the desired results, exhibiting the return losses under 12 dB from 8.4 GHz to 34.4 GHz. The operating frequencies of the power divider are 12.05 GHz to 13.15 GHz and 16.50 GHz to 19.30 GHz, respectively. The 20 dB bandwidths are 8.9 % and 17.9 %, respectively. Typical experimental measurements are conducted and compared with the simulated results.

Prototype Electromagnetic-Noise Filters Incorporated with Nano-Granular Co41Fe38Al13O8 Soft Ferromagnetic Thin Films on Coplanar Transmission Lines

  • Sohn, Jae-Cheon;Byun, Dong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.74-78
    • /
    • 2006
  • A non-integrated type noise filter on a Coplanar Waveguide (CPW) transmission line is demonstrated by using a highly resistive $Co_{41}Fe_{38}Al_{13}O_8$ nanogranular thin film with the dimensions of $4\;mm (\iota)\times4\;mm(\omega)\times0.1\;{\mu}m(t)$. The noise suppression characteristics are evaluated without placing an insulating layer between the CPW line and the magnetic thin film. The insertion loss is very low being less than 0.3 dB and this low value is maintained up to 2 GHz. At a ferromagnetic resonance frequency of 3.3 GHz, the power loss is very large and the degree of noise attenuation is measured to be 3 dB. This level of noise attenuation is still small for real applications; however, considering the small magnetic volume used in this work, further improvement is expected by simply increasing the magnetic volume and by integrating the magnetic thin film into the CPW transmission line.

D-CRLH Based Band Rejection Filter using a Concavo-Convex Coupled CPW Transmission Line

  • Seo, Soo-Duk;Cho, Hak-Rae;Yang, Doo-Yeong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.463-469
    • /
    • 2016
  • In this paper, the use of a dual composite right/left-handed coplanar waveguide (CPW) transmission line is proposed for the design of a band rejection filter. The notch property of the filter is achieved by combining the convex signal line with the shorted concave meander line, and the equivalent circuit model is extracted from the geometry of the unit cell for organizing the band rejection property. Then the equivalent parameters of the unit cell are analyzed to identify those behaviors. And the dispersion characteristics and energy distributions are simulated. In the end, the band rejection filter is manufactured by cascading two proposed unit cells. We show that the measurement result for the resonant frequency demonstrates good agreement with the simulation result and the band rejection filter provides a rejection performance of 17.5 dB at the stopband frequency ranging from 869 MHz to 894 MHz.