• Title/Summary/Keyword: CPU Management

Search Result 189, Processing Time 0.034 seconds

Method for reducing computational amount in video object detection (비디오 Object Detection에서의 연산량 감소를 위한 방법)

  • KIM, Do-Young;Kang, In-Yeong;Kim, Yeonsu;Choi, Jin-Won;Park, Goo-man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.723-726
    • /
    • 2021
  • 현재 단일 이미지에서 Object Detection 성능은 매우 좋은 편이다. 하지만 동영상에서는 처리 속도가 너무 느리고 임베디드 시스템에서는 real-time이 힘든 상황이다. 연구 논문에서는 하이엔드 GPU에서 다른 기능 없이 YOLO만 구동했을 때 real-time이 가능하다고 하지만 실제 사용자들은 상대적으로 낮은 사양의 GPU를 사용하거나 CPU를 사용하기 때문에 일반적으로는 자연스러운 real-time을 하기가 힘들다. 본 논문에서는 이러한 제한점을 해결하고자 계산량이 많은 Object Detection model 사용을 줄이는 방안은 제시하였다. 현재 Video영상에서 Object Detection을 수행할 때 매 frame마다 YOLO모델을 구동하는 것에서 YOLO 사용을 줄임으로써 계산 효율을 높였다. 본 논문의 알고리즘은 카메라가 움직이거나 배경이 바뀌는 상황에서도 사용이 가능하다. 속도는 최소2배에서 ~10배이상까지 개선되었다.

Design and Development of Electronic Attendance-absence Recording System Using Binary XML (Binary XML을 이용한 전자출결시스템 설계 및 개발)

  • Lee, Jaekun;Yeom, Saehun;Bang, Hyeja
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.3
    • /
    • pp.11-19
    • /
    • 2015
  • Due to recent development in mobile devices, the mobile device utilization and many related applications have been increasing. Most of initial applications on mobile devices just showed simple information, but now they processes huge data. However, smart devices have certain limitations in processing massive data. Especially, if the size of data increases, the speed of data processing adversely decreases, so the performance of programs also decreases. If hardware specification of the mobile devices is not enough to handle it, response time will be drastically delayed. To overcome these drawbacks, most of application running on mobile devices communicate with their servers to manage data. XML is a proper language for data communication to send and receive data between servers and mobile devices, because it defines rules of document's format and it is a textual data format and small-sized language. However, mobile devices have limitation such as memory, CPU and wireless network to process huge data and XML also takes a lot of time to communicate with servers and devices and handle data, so it could be overhead in service time. Binary XML is an alternative of performance improvement in data processing, which has XML's benefits and minimizes the XML size by binary coding. However, most of binaryXML which are used on applications don't fit on mobile applications. In this paper, we surveyed many kinds of binaryXML, compared merits and demerits to find a binaryXML for mobile applications. We propose how to use binary XML and implemented an electronic attendance system using binary XML to overcome the limitation of XML and to reduce the load of data communications between servers and devices.

Throughput Analysis of SBC for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Chang Y.J.;Lee S.H.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.593-596
    • /
    • 2005
  • The MSC is a remote sensing instrument with very high performance that is to be installed on KOMPSAT2 satellite. The MSC consists of EOS (Electro-Optic Subsystem), PMU (Payload Management Unit) and PDTS (Payload Data Transmission Subsystem). PMU controls and monitors all the other payload units by sending commands and collecting telemetry. PMU is in charge of interfacing between payload system and satellite bus system. PMU gets commands from ground-station via OBC (On-Board Computer) that is a main controller of the satellite bus system and sends telemetry to the ground-station via OBC. There is a processor module, called SBC (Single Board Computer) in the PMU. The SBC is a main controller of the MSC system. The main roles of the SBC are payload mission management, command validation and execution, telemetry collection and monitoring, ancillary data handling, event reporting, power control of payload sub-units and communication with these units. Intel's 80486DX2 processor has been used for the SBC. Due to the fact that the SBC plays important roles for imaging mission execution and handles a lot of control data that is required for payload operation, it is required to make analysis of the CPU load when it is in maximum operation mode. In this paper, the analysis and measurement results of the SBC throughput in the maximum operation mode.

  • PDF

Dynamic Relocation of Virtual Machines for Load Balancing in Virtualization Environment (가상화 환경에서 부하균형을 위한 가상머신 동적 재배치)

  • Sa, Seong-Il;Ha, Chang-Su;Park, Chan-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.12
    • /
    • pp.568-575
    • /
    • 2008
  • Server consolidation by sever virtualization can make one physical machine(PM) to run several virtual machines simultaneously. Although It is attractive in cost, it has complex workload behaviors. For that reason, efficient resource management method is required. Dynamic relocation of virtual machine(VM)[3,4] by live migration[1,2] is one of resource management methods. We proposed SCOA(Server Consolidation Optimizing Algorithm) : a fine-grained load balancing mechanism worked on this dynamic relocation mechanism. We could obtain accurate resource distribution information through pointed physical machines on multi dimensional resource usage coordination, so we could maintain more balanced resource state. In this paper, we show the effectiveness of our algorithm by comparison of experimental results between SCOA and sandpiper[3] by software simulation.

Composite Measures of Supercomputer Technology

  • Kim, Nam-Gyu;On, Noo Ri;Koh, Myoung-Ju;Lee, JongSuk Ruth;Cho, Keun-Tae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4142-4159
    • /
    • 2019
  • We have developed composite measures of supercomputer technology, reflecting various factors of supercomputers using Martino's scoring model. CPUs, accelerators, memory, interconnection networks, and power consumption are chosen as factors of the model. The weight values of the factors are derived based on a survey of 129 domestic and international experts. The measured values are then standardized to integrate measurement units of the factors in the model. This model has been applied to 50 supercomputers, and rank correlation analysis was performed using representative measures. As a consequence, the ranking drastically changes except for the 1st and 2nd supercomputers on the TOP500. In addition, the characteristics of memory and interconnection networks influence the ranking, and the results demonstrate that the proposed model has low correlations with HPL and HPCG but a high correlation with Green500. This indicates that power consumption is an important factor that has a significant effect on the measures of supercomputer technology. In addition, it is determined that the differences between the HPL ranking and the proposed model ranking are influenced by power consumption, CPU theoretical peak performance, and main memory bandwidth in order of significance. In conclusion, the composite measures proposed in this study are more suitable for comprehensively describing supercomputer technology than existing performance measures. The findings of this study are expected to support decision making related to management and policy in the procurement and operation of supercomputers.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

Design and Implementation of an Efficient Web Services Data Processing Using Hadoop-Based Big Data Processing Technique (하둡 기반 빅 데이터 기법을 이용한 웹 서비스 데이터 처리 설계 및 구현)

  • Kim, Hyun-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.726-734
    • /
    • 2015
  • Relational databases used by structuralizing data are the most widely used in data management at present. However, in relational databases, service becomes slower as the amount of data increases because of constraints in the reading and writing operations to save or query data. Furthermore, when a new task is added, the database grows and, consequently, requires additional infrastructure, such as parallel configuration of hardware, CPU, memory, and network, to support smooth operation. In this paper, in order to improve the web information services that are slowing down due to increase of data in the relational databases, we implemented a model to extract a large amount of data quickly and safely for users by processing Hadoop Distributed File System (HDFS) files after sending data to HDFSs and unifying and reconstructing the data. We implemented our model in a Web-based civil affairs system that stores image files, which is irregular data processing. Our proposed system's data processing was found to be 0.4 sec faster than that of a relational database system. Thus, we found that it is possible to support Web information services with a Hadoop-based big data processing technique in order to process a large amount of data, as in conventional relational databases. Furthermore, since Hadoop is open source, our model has the advantage of reducing software costs. The proposed system is expected to be used as a model for Web services that provide fast information processing for organizations that require efficient processing of big data because of the increase in the size of conventional relational databases.

Design and Implementation of ASTERIX Parsing Module Based on Pattern Matching for Air Traffic Control Display System (항공관제용 현시시스템을 위한 패턴매칭 기반의 ASTERIX 파싱 모듈 설계 및 구현)

  • Kim, Kanghee;Kim, Hojoong;Yin, Run Dong;Choi, SangBang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.89-101
    • /
    • 2014
  • Recently, as domestic air traffic dramatically increases, the need of ATC(air traffic control) systems has grown for safe and efficient ATM(air traffic management). Especially, for smooth ATC, it is far more important that performance of display system which should show all air traffic situation in FIR(Flight Information Region) without additional latency is guaranteed. In this paper, we design a ASTERIX(All purpose STructured Eurocontrol suRveillance Information eXchange) parsing module to promote stable ATC by minimizing system loads, which is connected with reducing overheads arisen when we parse ASTERIX message. Our ASTERIX parsing module based on pattern matching creates patterns by analyzing received ASTERIX data, and handles following received ASTERIX data using pre-defined procedure through patterns. This module minimizes display errors by rapidly extracting only necessary information for display different from existing parsing module containing unnecessary parsing procedure. Therefore, this designed module is to enable controllers to operate stable ATC. The comparison with existing general bit level ASTERIX parsing module shows that ASTERIX parsing module based on pattern matching has shorter processing delay, higher throughput, and lower CPU usage.

A Dynamic Allocation Scheme for Improving Memory Utilization in Xen (Xen에서 메모리 이용률 향상을 위한 동적 할당 기법)

  • Lee, Kwon-Yong;Park, Sung-Yong
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.37 no.3
    • /
    • pp.147-160
    • /
    • 2010
  • The system virtualization shows interest in the consolidation of servers for the efficient utilization of system resources. There are many various researches to utilize a server machine more efficiently through the system virtualization technique, and improve performance of the virtualization software. These researches have studied with the activity to control the resource allocation of virtual machines dynamically focused on CPU, or to manage resources in the cross-machine using the migration. However, the researches of the memory management have been wholly lacking. In this respect, the use of memory is limited to allocate the memory statically to virtual machine in server consolidation. Unfortunately, the static allocation of the memory causes a great quantity of the idle memory and decreases the memory utilization. The underutilization of the memory makes other side effects such as the load of other system resources or the performance degradation of services in virtual machines. In this paper, we suggest the dynamic allocation of the memory in Xen to control the memory allocation of virtual machines for the utilization without the performance degradation. Using AR model for the prediction of the memory usage and ACO (Ant Colony Optimization) algorithm for optimizing the memory utilization, the system operates more virtual machines without the performance degradation of servers. Accordingly, we have obtained 1.4 times better utilization than the static allocation.

Deposition Process Load Balancing Analysis through Improved Sequence Control using the Internet of Things (사물인터넷을 이용한 증착 공정의 개선된 순서제어의 부하 균등의 해석)

  • Jo, Sung-Euy;Kim, Jeong-Ho;Yang, Jung-Mo
    • Journal of Digital Convergence
    • /
    • v.15 no.12
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, four types of deposition control processes such as temperature, pressure, input/output(I/O), and gas were replaced by the Internet of Things(IoT) to analyze the data load and sequence procedure before and after the application of it. Through this analysis, we designed the load balancing in the sensing area of the deposition process by creating the sequence diagram of the deposition process. In order to do this, we were modeling of the sensor I/O according to the arrival process and derived the result of measuring the load of CPU and memory. As a result, it was confirmed that the reliability on the deposition processes were improved through performing some functions of the equipment controllers by the IoT. As confirmed through this paper, by applying the IoT to the deposition process, it is expected that the stability of the equipment will be improved by minimizing the load on the equipment controller even when the equipment is expanded.