• Title/Summary/Keyword: CPU(Central processing unit)

Search Result 70, Processing Time 0.023 seconds

A study on the application of computer used in a loom (직기에 있어서 Computer의 응용)

  • Jo, Baek-Hui;Kim, Gwang-Yeong;Kim, Jong-Su;Lee, Tae-Se
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.171-180
    • /
    • 1989
  • The automation of textile machinery in the fabric manufacture is strongly demanded in order to improve the industrial structure related to labour-force and cost curtailment, in addition, to keep step with the various and small production system and the consumption tendency requesting a high quality fabrics. In this thesis, the technology applying the computer to an air jet loom and characteristics obtained from it are derived. To efficently apply an automized and unmanned textile machinery, an air jet loom is equipped with the let-off, take-up and weft insertion device attached a central processing unit(CPU) which can automatically operate according to a program. As a result, an air jet loom is available for the factory automation, which has advantages including productivity promotion, high quality security, energy savings, specification & variety, efficient production control, in fabric manufacturing process.

  • PDF

Scalable Prediction Models for Airbnb Listing in Spark Big Data Cluster using GPU-accelerated RAPIDS

  • Muralidharan, Samyuktha;Yadav, Savita;Huh, Jungwoo;Lee, Sanghoon;Woo, Jongwook
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.2
    • /
    • pp.96-102
    • /
    • 2022
  • We aim to build predictive models for Airbnb's prices using a GPU-accelerated RAPIDS in a big data cluster. The Airbnb Listings datasets are used for the predictive analysis. Several machine-learning algorithms have been adopted to build models that predict the price of Airbnb listings. We compare the results of traditional and big data approaches to machine learning for price prediction and discuss the performance of the models. We built big data models using Databricks Spark Cluster, a distributed parallel computing system. Furthermore, we implemented models using multiple GPUs using RAPIDS in the spark cluster. The model was developed using the XGBoost algorithm, whereas other models were developed using traditional central processing unit (CPU)-based algorithms. This study compared all models in terms of accuracy metrics and computing time. We observed that the XGBoost model with RAPIDS using GPUs had the highest accuracy and computing time.

The Implementation of High speed Memory module Interface in the Military Single Board Computer (군용Single Board Computer에서의 고속메모리모듈 I/F구현)

  • Lee, Teuc-Soo;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.3
    • /
    • pp.521-527
    • /
    • 2011
  • POWER PC series are common to the Central Processing Unit for Military Single Board Computer. Among them, G4 group, which contains the 74xx series supported by Freescale manufacturer is mainly used in the Military applications. We focus on the Interface between memory and controller. PCB stacking method, component routing, impedance matching and harsh environment for Military spec are the main constraints for implementation. Also, we developed memory as a module for the consideration of Military environments. The overall type of SBC should be designed by the form of 6U VME or 3U VME. Therefore this study suggests the electrically optimum Interface matching, Artwork technology based on the signal cross over and PCB stacking method on the harsh environment.

A Study on the Performance Improvement of Software Digital Filter using GPU (GPU를 이용한 소프트웨어 디지털 필터의 성능개선에 관한 연구)

  • Yeom, Jae-Hwan;Oh, Se-Jin;Roh, Duk-Gyoo;Jung, Dong-Kyu;Hwang, Ju-Yeon;Oh, Chungsik;Kim, Hyo-Ryoung
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.4
    • /
    • pp.153-161
    • /
    • 2018
  • This paper describes the performance improvement of Software (SW) digital filter using GPU (Graphical Processing Unit). The previous developed SW digital filter has a problem that it operates on a CPU (Central Processing Unit) basis and has a slow speed. The GPU was introduced to filter the data of the EAVN (East Asian VLBI Network) observation to improve the operation speed and to process data with other stations through filtering, respectively. In order to enhance the computational speed of the SW digital filter, NVIDIA Titan V GPU board with built-in Tensor Core is used. The processing speed of about 0.78 (1Gbps, 16MHz BW, 16-IF) and 1.1 (2Gbps, 32MHz BW, 16-IF) times for the observing time was achieved by filtering the 95 second observation data of 2 Gbps (512 MHz BW, 1-IF), respectively. In addition, 2Gbps data is digitally filtered for the 1 and 2Gbps simultaneously observed with KVN (Korean VLBI Network), and compared with the 1Gbps, we obtained similar values such as cross power spectrum, phase, and SNR (Signal to Noise Ratio). As a result, the effectiveness of developed SW digital filter using GPU in this research was confirmed for utilizing the data processing and analysis. In the future, it is expected that the observation data will be able to be filtered in real time when the distributed processing optimization of source code for using multiple GPU boards.

A Tool for On-the-fly Repairing of Atomicity Violation in GPU Program Execution

  • Lee, Keonpyo;Lee, Seongjin;Jun, Yong-Kee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.1-12
    • /
    • 2021
  • In this paper, we propose a tool called ARCAV (Atomatic Recovery of CUDA Atomicity violation) to automatically repair atomicity violations in GPU (Graphics Processing Unit) program. ARCAV monitors information of every barrier and memory to make actual memory writes occur at the end of the barrier region or to make the program execute barrier region again. Existing methods do not repair atomicity violations but only detect the atomicity violations in GPU programs because GPU programs generally do not support lock and sleep instructions which are necessary for repairing the atomicity violations. Proposed ARCAV is designed for GPU execution model. ARCAV detects and repairs four patterns of atomicity violations which represent real-world cases. Moreover, ARCAV is independent of memory hierarchy and thread configuration. Our experiments show that the performance of ARCAV is stable regardless of the number of threads or blocks. The overhead of ARCAV is evaluated using four real-world kernels, and its slowdown is 2.1x, in average, of native execution time.

A Study on the Safety Vest by Sports and Leisure Population Distribution -Focusing on Motorcycle Vest- (스포츠 레저 인구 확산에 따른 안전 상의에 관한 연구 -모터사이클 상의를 중심으로-)

  • Lee, Hyunyoung
    • Journal of Fashion Business
    • /
    • v.22 no.5
    • /
    • pp.125-136
    • /
    • 2018
  • This study intended to develop a motorcycle safe vest that can be prepared against accidents by mounting a smart module (with built-in sensor) on the safe vest in order to emphasize safety among functional aspects of the motorcycle clothing. The research method investigated professional books, prior research, and Internet data to examine the characteristics of motorcycle wear and the theoretical examination of smart wear, and analyzed the functional characteristics of the design by reviewing smart jacket and vest design cases for motorcycles currently on the market. As a results of study an interface device sensor, which contains a sensor with IMU(Intertial Measurement Unit) and CPU(Central Processing Unit), was inserted into a motorcycle top in order to draw attention to the safety of motorcycle riders. The IMU sensor attached to the vest detected the tilting motion of the rider to either left or right side to obtain data on left or right direction, sudden stop, and so forth and displayed left or right turn signal and sudden stop sign on the backplate (back) through the LED module. As for charging the device to operate LEDs, a generator, which is designed to convert the heat energy in the exhaust into electric energy, was used to efficiently self-produce the power required to operate LEDs of the top while riding.

Simple Spectral Calibration Method and Its Application Using an Index Array for Swept Source Optical Coherence Tomography

  • Jung, Un-Sang;Cho, Nam-Hyun;Kim, Su-Hwan;Jeong, Hyo-Sang;Kim, Jee-Hyun;Ahn, Yeh-Chan
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.386-393
    • /
    • 2011
  • In this study, we report an effective k-domain linearization method with a pre-calibrated indexed look-up table. The method minimizes k-domain nonlinear characteristics of a swept source optical coherence tomography (SS-OCT) system by using two arrays, a sample position shift index and an intensity compensation array. Two arrays are generated from an interference pattern acquired by connecting a Fabry-Perot interferometer (FPI) and an optical spectrum analyzer (OSA) to the system. At real time imaging, the sample position is modified by location movement and intensity compensation with two arrays for linearity of wavenumber. As a result of evaluating point spread functions (PSFs), the signal to noise ratio (SNR) is increased by 9.7 dB. When applied to infrared (IR) sensing card imaging, the SNR is increased by 1.29 dB and the contrast noise ratio (CNR) value is increased by 1.44. The time required for the linearization and intensity compensation is 30 ms for a multi thread method using a central processing unit (CPU) compared to 0.8 ms for compute unified device architecture (CUDA) processing using a graphics processing unit (GPU). We verified that our linearization method is appropriate for applying real time imaging of SS-OCT.

R Based Parallelization of a Climate Suitability Model to Predict Suitable Area of Maize in Korea (국내 옥수수 재배적지 예측을 위한 R 기반의 기후적합도 모델 병렬화)

  • Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.3
    • /
    • pp.164-173
    • /
    • 2017
  • Alternative cropping systems would be one of climate change adaptation options. Suitable areas for a crop could be identified using a climate suitability model. The EcoCrop model has been used to assess climate suitability of crops using monthly climate surfaces, e.g., the digital climate map at high spatial resolution. Still, a high-performance computing approach would be needed for assessment of climate suitability to take into account a complex terrain in Korea, which requires considerably large climate data sets. The objectives of this study were to implement a script for R, which is an open source statistics analysis platform, in order to use the EcoCrop model under a parallel computing environment and to assess climate suitability of maize using digital climate maps at high spatial resolution, e.g., 1 km. The total running time reduced as the number of CPU (Central Processing Unit) core increased although the speedup with increasing number of CPU cores was not linear. For example, the wall clock time for assessing climate suitability index at 1 km spatial resolution reduced by 90% with 16 CPU cores. However, it took about 1.5 time to compute climate suitability index compared with a theoretical time for the given number of CPU. Implementation of climate suitability assessment system based on the MPI (Message Passing Interface) would allow support for the digital climate map at ultra-high spatial resolution, e.g., 30m, which would help site-specific design of cropping system for climate change adaptation.

Development and Reliability of Intraoral Appliance for Diagnosis and Control of Bruxism (이갈이 진단 및 조절용 구내장치의 개발과 신뢰도 조사)

  • Kim, Seung-Won;Kim, Mee-Eun;Kim, Ki-Suk
    • Journal of Oral Medicine and Pain
    • /
    • v.30 no.1
    • /
    • pp.69-77
    • /
    • 2005
  • The purposes of this study were to develop and introduce a novel intraoral appliance for bruxism composed of power switch and biofeedback device and further to examine inter- and intra-reliability of the appliance prior to clinical tests. The newly-developed appliance consisted of detection sensors, a central processing unit (CPU), a reactor and a storage unit and a displayer. Compact-sized, waterproof switches were selected as bruxism detection sensor and any sensor activation by clenching or grinding event was processed at the CPU and transmitted, by radio wave, to the reactor and storage unit and triggered auditory or vibratory signal, subsequently producing biofeedback to the patient with bruxism. The data on bruxing event in the storage unit can be displayed on the computer, making it possible analyzing frequency, duration and nature of bruxism. Cast models were obtained from ten volunteers with normal occlusion to evaluate reliability of the appliances. For inter-operator reliability on the intraoral appliances, each operator of the two fabricated the appliance for the same subject and compared the minimal contact forces provoking auditory biofeedback reaction in vertical, lateral and central directions. Intra-operator reliability was also investigated on the appliances made by a single operator at two separate times with an interval of two days. Conclusively, the newly-developed appliance is compact and safe to use in oral circumstance and easy to make. Furthermore, it had to be proven reliability excellent enough to apply in clinical settings. Thus, it is assumed that this appliance with the processor and the storage of data and auditory or vibratory biofeedback function is available and useful to analyze and control bruxism.

Presence of Bacteria and Fungi in Inner Compartment of Personal Computers(PCs) (개인용 컴퓨터 내부에서 발견되는 세균과 곰팡이)

  • Kwon, Kil-Koang;Yoon, Seok-Min;Choi, Chang-Ho;Jeong, Bong-Geun;Lee, Ki-Won;Yi, Dong-Heui;Kim, Hyung-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.728-733
    • /
    • 2007
  • Presence and distribution of bacteria and fungi in inner compartment of PCs(Personal Computers) were investigated. Samples for the analysis were collected from inside of PCs which had been used in various facilities including public computer facilities, laboratories and computer training rooms of a university. Total number of PC examined in this study was 51 each. When the total CFU(colony forming unit) of the inner compartment of the PCs was measured, the bacterial count was found to be dependent on the operation time(total running time) of PCs. When the distribution of bacteria in the inner compartment of PCs was estimated, CPU(Central Processing Unit) cooling fan area showed the highest bacterial concentration(average 605 $CFU/cm^2$). In the case of the fungi, various opportunistic pathogens including Aspergillus sp. and Penicillium sp. were isolated and identified in the inner compartment of PCs. And the average of bacterial number in the dust collected from the PCs was 212 CFU/mg. These results indicated that handling of PC might have a risk of infection by the microorganism.