• Title/Summary/Keyword: CP2c

Search Result 758, Processing Time 0.037 seconds

Cnidoscolus aconitifolius leaf pellet can manipulate rumen fermentation characteristics and nutrient degradability

  • Totakul, Pajaree;Matra, Maharach;Sommai, Sukruthai;Wanapat, Metha
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1607-1615
    • /
    • 2021
  • Objective: Chaya (Cnidoscolus aconitifolius) leaf has been found to be an important source of protein, vitamins, minerals, as well as phytonutrients. The present study aimed to evaluate the effect of Chaya leaf pellet (CHYP) with various level of crude protein (CP) in the concentrate on rumen fermentation characteristics and nutrient degradability in in vitro gas production technique. Methods: In an in vitro rumen fermentation study the dietary treatments were arranged according to a 3×5 factorial arrangement in a completely randomized design, consisting of Factor A: three levels of CP of concentrate mixtures (14%, 16%, and 18% CP, respectively) and Factor B: five levels of CHYP supplementation (at 0%, 2%, 4%, 6%, and 8% of dry matter substrates). Results: The gas production kinetics, fraction (a) and fraction (b) were lower (p<0.05) with an increasing CHYP addition. Additionally, the fraction (a+b) was found to yield a significant interaction (p<0.05) while the fraction (c) was not impacted by CHYP addition. However, in vitro DM degradability was enhanced and interactive (p<0.05), using 16% CP of concentrate with 6% and 8% CHYP, when compared with 18% CP in the non-addition. Additionally, the treatment with higher CP of the concentrate was higher in NH3-N concentration (p<0.001) and by CHYP supplementation group (p<0.05). Nevertheless, protozoal counts in the rumen were remarkably decreased (p<0.05) with increasing level of CHYP supplementation. Furthermore, rumen C2 concentration was lower (p<0.05) in the treatments with CHYP supplementation, while C3 was significantly increased and interactive (p<0.05) between levels of CP and CHYP supplementation especially at 8% CHYP supplementation. Conclusion: Based on this study, the results revealed CHYP as a promising feed supplement to enhance rumen fermentation and to mitigate methane production. However, in vivo feeding experiments should be subsequently conducted to elucidate the effect of CHYP supplementation on rumen fermentation, as well as ruminant production efficiency.

Pilot-scale preparation and physicochemical characteristics of microbiological agar from Gelidium amansii in Korea (국내산 우뭇가사리로부터 미생물 배지용 한천의 pilot규모 정제와 특성)

  • KIM Doo-Sang;KIM Hyeung-Rak;KIM Jeong-Han;PYEUN Jae-Hyeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.1
    • /
    • pp.70-74
    • /
    • 2000
  • Agar for microbiological medium was prepared with pilot-scale for industrial application by the process of microfiltration ($0.4 {\mu}m\;pore size$) in $40{\~}50{\circ}C$, washing with sot water, and treatment with $0.25\;N NaOH\;at\;70{\circ}C$. Transparency, gel strength, viscosity, sulfate content, and syneresis ratio of agar prepared from Gelidium amansii was compared with commercial agar for microbiological medium. Gel strength and transparency were increased with processing, however, it's viscosity, sulfate content, and syneresis ratio were reduced. The final agar product was superior to commercial agar for microbiological medium.

  • PDF

Low Temperature Diffusion Brazing of Commercial Pure(CP)-Ti alloy with Zr-based Filler Metal (Zr기 필러메탈을 이용한 상용 순 티타늄(CP-Ti) 합금의 저온 브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Titanium and its alloys can be usually joined with brazing method. And the alloys should be brazed at low temperature to keep their original microstructure. In this study, the mechanical strength and microstructure of the CP-Ti joint-brazed with $Zr_{54}Ti_{22}Ni_{16}Cu_8$ filler metal having melting temperature of $774{\sim}783^{\circ}C$ were investigated. The tensile strengths of the joint-brazed at $800^{\circ}C$ with $100^{\circ}C/min$ of cooling rate showed more than 400 MPa which was as high as base metal. The $Widmanst{\ddot{a}}tten$ structure consisting of Ti and $Ti_2Ni$ phase was observed in the joint area. However, the tensile strengths of the joint-brazed at $800^{\circ}C$ with $15^{\circ}C/min$ of cooling rate were decreased and the Ti, $(Ti,Zr)_2Ni$ and $Ti_2Ni$ phases were observed at the joint area. It is believed that the $(Ti,Zr)_2Ni$ laves phases could decrease the mechanical strength of the joint and the cooling rate should be controled to get high strength of the titanium joint.

Determination of Phantom Scatter Factors for Small Photon Fields (소조사면 광자선의 팬톰산란인수 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Total scatter factor ($S_{cp}$), head scatter factor ($S_c$) and phantom scatter factor ($S_p$) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared $S_{cp}$ with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of 1~3% were included in the values of Sc but trend of total results of $S_c$ was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form $S_{cp}$ and $S_c$. The results of $S_p$ were compared and were well-agreed with those of other authors.

  • PDF

Grindability of Ti-Xwt%Cu Alloys for Dental Applications (치과용 Ti-Xwt%Cu 합금의 연삭성)

  • Ahn, Jae-Seok
    • Journal of Technologic Dentistry
    • /
    • v.31 no.4
    • /
    • pp.31-36
    • /
    • 2009
  • This study evaluated the grindability of series of Ti-Cu alloys in order to develop a Ti alloy with better grindability than commercially pure titanium(CP Ti). Experimental Ti-Xwt%Cu alloys(X=2, 5, 10) were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at circumferential speed(15000, 30000rpm) by applying a force(250, 300gr). Grindability was evaluated by measuring the amount of metal volume removed after grinding for 2 minutes. Data were compared to those for CP Ti and Ti-6wt%Al-4wt%V alloy. From results, It was observed that the grindability of Ti-Cu alloys increased with an increase in the Cu concentration compared to CP Ti, particularly the 10wt%Cu alloy exhibited the highest grindability at all speeds. By alloying with Cu, the Ti exhibited better grindability at high speed. The continuous precipitation of $Ti_2Cu$ among the ${\alpha}$-matrix grains made this material less ductile and facilitated more effective grinding because small segments more readily formed. The Ti-10wt%Cu alloy has a great potential for use as a dental machining alloy.

  • PDF

Optimization of PEALD-Ru Process using Ru(EtCp)2 (Ru(EtCp)2 전구체를 이용한 PEALD Ru 공정 최적화에 관한 연구)

  • Kwon, Se-Hun;Jeong, Young-Keun
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.19-23
    • /
    • 2013
  • Ru films were successfully prepared by plasma-enhanced atomic layer deposition (PEALD) using $Ru(EtCp)_2$ and $NH_3$ plasma. To optimize Ru PEALD process, the effect of growth temperature, $NH_3$ plasma power and $NH_3$ plasma time on the growth rate and preferred orientation of the deposited film was systemically investigated. At a growth temperature of $270^{\circ}C$ and $NH_3$ plasma power of 100W, the saturated growth rate of 0.038 nm/cycle was obtained on the flat $SiO_2$/Si substrate when the $Ru(EtCp)_2$ and $NH_3$ plasma time was 7 and 10 sec, respectively. When the growth temperature was decreased, however, an increased $NH_3$ plasma time was required to obtain a saturated growth rate of 0.038 nm/cycle. Also, $NH_3$ plasma power higher than 40 W was required to obtain a saturated growth rate of 0.038 nm/cycle even at a growth temperature of $270^{\circ}C$. However, (002) preferred orientation of Ru film was only observed at higher plasma power than 100W. Moreover, the saturation condition obtained on the flat $SiO_2$/Si substrate resulted in poor step coverage of Ru on the trench pattern with an aspect ratio of 8:1, and longer $NH_3$ plasma time improved the step coverage.

Wear Behavior of Saffil/SiCp reinforced Metal Matrix Composites at the room temperature (Saffil/SiCp을 이용한 금속 복합재료의 상온 마모 거동)

  • 조종인;한경섭
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.46-49
    • /
    • 2003
  • Aluminum based metal matrix composites(MMCs) are well known for their high specific strength, stiffness and hardness. They are gaining further importance because of their high wear resistance. In this study, Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15% and Al/Saffil-5%/SiC(particle type)-15% hybird MMCs' wear behavior were characterized by the pin-on-disk test under various normal load The superior wear resistance was exhibited at Al/Saffil-5%/SiC(particle type)-15% MMCs. And this MMCs' predominant wear mechanism is subsurface cracking in the low load wear regime. Others(Al/Saffil-20%, Al/Saffil-5%/Al2O3(particle type)-15%) showed the similar wear resistance with each other at the same test condition. In the low load & room temperature condition, the wear resistance was improved due to the high hardness of the ceramic reinforcements. As the test load increased, the wear properties were governed by the wear properties of matrix.

  • PDF

Conditions for Artificial Culture of Lemna Paucicostata and Potentiality as an Alternative Biomass Source (바이오매스 자원으로서의 Lemna Paucicostata의 인공배양조건과 이화학적 특성에 관한 연구)

  • Kwag, Jung-Hoon;Lee, Jin-Eui;Kim, Ki-Hye;Eum, Hye-Yeong;Shin, Jong-Suh;Ra, Chang-Six
    • Journal of Animal Environmental Science
    • /
    • v.16 no.2
    • /
    • pp.143-152
    • /
    • 2010
  • Conditions for artificial culture of Lemna Paucicostata and its nutritional values were examined in this study. Lemna P. was cultured using artificial wastewater and a bioreactor (total volume $2,630\;cm^3$, working volume $2,240\;cm^3$) was operated at conditions of 6,250 lux and $28^{\circ}C$. Water flow affected the growth of Lemna P.: growth rate was very high (more than $1.1\;d^{-1}$) at a condition of no-water movement, but it was very low (less than $0.15\;d^{-1}$) when water moved slowly. The growth of Lemna P. was higher in $16h\;d^{-1}$ light cycle than in Sand $24h\;d^{-1}$, and it was also severely affected by the initial $NH_4$-N levels of wastewater. The growth rate of Lemna P. was high in lower $NH_4$-N level, indicating that the growth rate is in inverse proportion to $NH_4$-N concentration in wastewater. However, the contents of crude protein (CP) of Lemna P. were proportional to the initial $NH_4$-N concentration. The CP contents of Lemna P. cultured at 2, 10, 50 and 100 $NH_4$-N mg $L^{-1}$ was 18, 24, 37, 43%, respectively, showing the Lemna P. cultured at 50 and $100\;mg\;L^{-1}$ had similar protein contents to linseed (CP 35%), cottonseed (CP 38%) and soybean (CP 45%). Fat, protein, fiber, NDF and ADF contents of Lemna P. harvested at conditions of $16h\;d^{-1}$ light cycle and less than $2\;mg\;L^{-1}$ of $NH_4$-N level was 2.8, 18, 27, 20, 41 and 65.7%, respectively. Since the growth rate of Lemna P. was very high (more than $1.1\;d^{-1}$) at those conditions, it was convinced that mass production of valuable protein and fiber sources are feasible. In particular, since the Lemna P. has unsaturated fatty acids found mainly in animal fat as well as beneficial fatty acids to health such as C18:ln9c, C18:2n6c, C20:5n3 and C22:2, the Lemna P. biomass would be a highly valuable alternative feed source to grains.

Preparation and Reactivity of Cu-Zn-Al Based Hybrid Catalysts for Direct Synthesis of Dimethyl Ether by Physical Mixing and Precipitation Methods (물리혼합 및 침전법에 의한 DME 직접 합성용 Cu-Zn-Al계 혼성촉매의 제조 및 반응특성)

  • Bang, Byoung Man;Park, No-Kuk;Han, Gi Bo;Yoon, Suk Hoon;Lee, Tae Jin
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.566-572
    • /
    • 2007
  • Two hybrid catalysts for the direct synthesis of DME were prepared and the catalytic activity of these catalysts were investigated. The hybrid catalyst for the direct synthesis of DME was composed as the catalytic active components of methanol synthesis and dehydration. The methanol synthesis catalyst was formed from the precursor contained Cu and Zn, the methanol dehydration catalyst was used ${\gamma}-Al_2O_3$. As PM-CZ+D and CP-CZA/D, Two hybrid catalysts were prepared by physical mixing method (PM-CZ+D) and precipitation method (CP-CZA/D), respectively. PM-CZ+D was prepared by physically mixing methanol synthesis catalyst and methanol dehydration catalyst, CP-CZA/D was prepared by depositing Cu-Zn or Cu-Zn-Al components on ${\gamma}-Al_2O_3$. The crystallinity and the surface morphology of synthesized catalyst were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) to investigate the physical property of prepared catalyst. And BET surface area by $N_2$ adsorption and the surface area of Cu by $N_2O$ chemisorption were investigated about the hybrid catalysts. In addition, catalytic activity of these hybrid catalysts was examined with varying reaction conditions. At that time, the reaction temperature of $250{\sim}290^{\circ}C$, the reaction pressure of 50~70 atm, the $[H_2]/[CO]$ mole ratio of 0.5~2.0 and the space velocity of $1,500{\sim}6,000h^{-1}$ were investigated the catalytic activity. From these results, it was confirmed that the reactivity of CP-CZA/D was higher than that of PM-CZ+D. When the conditions of reaction temperature, pressure, $[H_2]/[CO]$ ratio and space velocity were $260^{\circ}C$, 50 atm and 1.0, $3,000h^{-1}$ respectively, CO conversion using CP-CZA/D hybrid catalyst was 72% and the CO conversion of CP-CZA/D was more than 20% compared with the CO conversion of PM-CZ+D. It was known that Cu surface area of CP-CZA/D hybrid catalyst was higher than that of hybrid PM-CZ+D catalyst using $N_2O$ chemisorption. It was assumed that the catalytic activity was improved because Cu particle of hybrid catalyst prepared by precipitation method was well dispersed.

Effects of Different Levels of CP Intake on Protein Utilization and N Excretion in Varying Growth Stages of Hanwoo Steers (한우 거세우의 성장단계별 CP 급여수준이 단백질 체내 이용성 및 N 배설량에 미치는 효과)

  • Oh, Y.G.;Nam, I.S.;Choi, C.W.;Baek, K.H.;Kim, J.H.;Kim, D.H.;Seol, Y.J.;Kim, K.H.
    • Journal of Animal Science and Technology
    • /
    • v.49 no.3
    • /
    • pp.369-378
    • /
    • 2007
  • Three experiments with different stage of Hanwoo steers (average BW of 167kg, 355kg and 449kg, respectively) were conducted to examine the effect of different quantities of CP intake with similar DM intake on protein balance and N excretion. Twelve Hanwoo steers in each experiment were offered three diets containing three levels of protein (9, 14 and 18% on DM basis) in the concentrate formulated with using different amount of ground corn grain or corn gluten meal. There were significant effects of increasing CP intake on CP digestibility but not on DM digestibility. Despite different CP intake, apparent fecal N outputs were not significantly affected. However, amounts of N excreted into urine increased (p<0.05) with increasing CP intake. There was an obvious effect of live body weight on efficiency of body protein conversion of CP consumed in excess of animal requirement for maintenance, with slopes of 70% and 46~39% for growing and fattening stage, respectively. Nitrogen excretion into feces and urine in this experiment was 70% of the daily N consumption for fattening stage, compared with 60% for growing stage.