• Title/Summary/Keyword: CP(Cyclic Prefix)

Search Result 56, Processing Time 0.024 seconds

Spectrally encapsulated OFDM: Vectorized structure with minimal complexity

  • Kim, Myungsup;Kwak, Do Young;Jung, Jiwon;Kim, Ki-Man
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.660-673
    • /
    • 2021
  • To efficiently use frequency resources, the next 6th generation mobile communication technology must solve the problem of out-of-band emission (OoBE) of cyclic prefix (CP) orthogonal frequency division multiplexing (OFDM), which is not solved in 5th generation technology. This study describes a new zero insertion technique to replace an existing filtering scheme to solve this internal problem in OFDM signals. In the development of the proposed scheme, a precoder with a two-dimensional structure is first designed by generating a two-dimensional mapper and using the specialty of each matrix. A spectral shaping technique based on zero insertion instead of a long filter is proposed, so it can be applied not only to long OFDM symbols, but also very short ones. The proposed method shows that the transmitted signal is completely blocked at the bandwidth boundaries of signals according to the current standards, and it is confirmed that the proposed scheme is ideal with respect to bit error rate (BER) performance because its BER is the same as that of CP-OFDM. In addition, the proposed scheme can transformed into a real time structure through vectorizing process with minimal complexity.

Resource scheduling scheme for 5G mmWave CP-OFDM based wireless networks with delay and power allocation optimizations

  • Marcus Vinicius G. Ferreira;Flavio H. T. Vieira;Alisson A. Cardoso
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • In this paper, to optimize the average delay and power allocation (PA) for system users, we propose a resource scheduling scheme for wireless networks based on Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) according to the first fifth-generation standards. For delay minimization, we solve a throughput maximization problem that considers CPOFDM systems with carrier aggregation (CA). Regarding PA, we consider an approach that involves maximizing goodput using an effective signal-to-noise ratio. An algorithm for jointly solving delay minimization through computation of required user rates and optimizing the power allocated to users is proposed to compose the resource allocation approach. In wireless network simulations, we consider a scenario with the following capabilities: CA, 256-Quadrature Amplitude Modulation, millimeter waves above 6 GHz, and a radio frame structure with 120 KHz spacing between the subcarriers. The performance of the proposed resource allocation algorithm is evaluated and compared with those of other algorithms from the literature using computational simulations in terms of various Quality of Service parameters, such as the throughput, delay, fairness index, and loss rate.

Adaptive threshold for discrete fourier transform-based channel estimation in generalized frequency division multiplexing system

  • Vincent Vincent;Effrina Yanti Hamid;Al Kautsar Permana
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.392-403
    • /
    • 2024
  • Even though generalized frequency division multiplexing is an alternative waveform method expected to replace the orthogonal frequency division multiplexing in the future, its implementation must alleviate channel effects. Least-squares (LS), a low-complexity channel estimation technique, could be improved by using the discrete Fourier transform (DFT) without increasing complexity. Unlike the usage of the LS method, the DFT-based method requires the receiver to know the channel impulse response (CIR) length, which is unknown. This study introduces a simple, yet effective, CIR length estimator by utilizing LS estimation. As the cyclic prefix (CP) length is commonly set to be longer than the CIR length, it is possible to search through the first samples if CP is larger than a threshold set using the remaining samples. An adaptive scale is also designed to lower the error probability of the estimation, and a simple signal-to-interference-noise ratio estimation is also proposed by utilizing a sparse preamble to support the use of the scale. A software simulation is used to show the ability of the proposed system to estimate the CIR length. Due to shorter CIR length of rural area, the performance is slightly poorer compared to urban environment. Nevertheless, satisfactory performance is shown for both environments.

Performance analysis of WPM-based transmission with equalization-aware bit loading

  • Buddhacharya, Sarbagya;Saengudomlert, Poompat
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.184-196
    • /
    • 2019
  • Wavelet packet modulation (WPM) is a multicarrier modulation (MCM) technique that has emerged as a potential alternative to the widely used orthogonal frequency-division multiplexing (OFDM) method. Because WPM has overlapped symbols, equalization cannot rely on the use of the cyclic prefix (CP), which is used in OFDM. This study applies linear minimum mean-square error (MMSE) equalization in the time domain instead of in the frequency domain to achieve low computational complexity. With a modest equalizer filter length, the imperfection of MMSE equalization results in subcarrier attenuation and noise amplification, which are considered in the development of a bit-loading algorithm. Analytical expressions for the bit error rate (BER) performance are derived and validated using simulation results. A performance evaluation is carried out in different test scenarios as per Recommendation ITU-R M.1225. Numerical results show that WPM with equalization-aware bit loading outperforms OFDM with bit loading. Because previous comparisons between WPM and OFDM did not include bit loading, the results obtained provide additional evidence of the benefits of WPM over OFDM.

Comparison of Time and Frequency Resources of DFT-s-OFDM Systems Using the Zero-Tail and Unique Word (Zero Tail과 Unique Word를 사용하는 DFT-s-OFDM 시스템들의 시간과 주파수 자원 비교)

  • Kim, Byeongjae;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.12
    • /
    • pp.1715-1720
    • /
    • 2016
  • In the upcoming 5-generation mobile communication system, various techniques for improving the power efficiency and spectral efficiency have been proposed. 5G mobile communication system also have been studied a lot of multi-carrier-based modulation techniques like the 4G mobile communication system. In this paper, we analyzed the conventional system structure of the Zero-tail DFT-s-OFDM and UW (Unique Word) -DFT-s-OFDM system based on DFT-s-OFDM system in these techniques. UW and zero are added and used each system, and CP is removed. the result of quality of systems for simulation, OOB(Out of Band) power of Zero-tail DFT-s-OFDM and UW-DFT-s-OFDM use the less time resource as long as CP length, also both systems are reduced about 11dB than DFT-s-OFDM system. In these result, Zero-tail DFT-s-OFDM and UW-DFT-s-OFDM system are more effective than DFT-s-OFDM system.

Data Transmission Rate Improvement Scheme in Power Line Communication System for Smart Grid (스마트 그리드를 위한 전력선 통신 시스템에서의 데이터 전송률 향상 기법)

  • Kim, Yo-Cheol;Bae, Jung-Nam;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12B
    • /
    • pp.1183-1191
    • /
    • 2010
  • In this paper, I propose an adaptive OFDM CP length algorithm for in PLC systems for smart grid. The proposed scheme calculates the channel delay information at the CP controller of the receiver by taking correlation between a received data frame and the following delayed one. The CP controller, immediately, feeds back the channel delay information to the transmitter. Then, the transmitter adapts CP length for next data frame. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of packet data rate, cumulative packet data rate, and bit error rate (BER). The simulation results showed data gain (which is the amount of the reduced bits) gets larger as the number of packets increase, but the amount of data gain reduced as the number of branches ($N_{br}$) increase. In respects of BER for the cases $N_{br}$ is 3, 4, and 5, performance of the adaptive CP length algorithm and the fixed CP scheme are similar. Therefore, it is confirmed the proposed scheme achieved data rate increment without BER performance reduction compared to the conventional fixed CP length scheme.

Frequency Synchronization Algorithm for Improving Performance of OFDMA System in 3GPP LTE Downlink (3GPP LTE 하향링크 OFDMA 시스템의 수신 성능 향상을 위한 주파수 동기 알고리즘)

  • Lee, Dae-Hong;Im, Se-Bin;Roh, Hee-Jin;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.120-130
    • /
    • 2009
  • In this paper, we propose a receiver structure for frequency synchronization in OFDMA (Orthogonal Frequency Division Multiple Access) system which is considered as 3GPP LTE(Long Term Evolution) downlink. In general, OFDMA frequency synchronization consists of two parts: coarse synchronization and fine synchronization. We consider P-SCH (Primary-Synchronization Channel) and CP (Cyclic Prefix) of OFDMA symbol for coarse synchronization and fine synchronization, respectively. The P-SCH signal has two remarkable disadvantages that it does not have sufficiently many sub-carriers and its differential correlation characteristic is not good due to ZC (Zadoff Chu) sequence-specific property. Hence, conventional frequency synchronization algorithms cannot obtain satisfactory performance gain. In this paper, we propose a modified differential correlation algorithm to improve performance of the coarse frequency synchronization. Also, we introduce an effective PLL (Phase Locked Loop) structure to guarantee stable performance of the fine frequency synchronization. Simulation results verify that the proposed algorithm has superior performance to the conventional algorithms and the 2nd-order PLL is effective to track the fine frequency offset even in high mobility.

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

8 Antenna Polar Switching Up-Down Relay Networks

  • Li, Jun;Lee, Moon-Ho;Yan, Yier;Peng, Bu Shi;Hwang, Gun-Joon
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.4
    • /
    • pp.239-249
    • /
    • 2011
  • In this paper, we propose a reliable $8{\times}8$ up-down switching polar relay code based on 3GPP LTE standard, motivated by 3GPP LTE down link, which is 30 bps/Hz for $8{\times}8$ MIMO antennas, and by Arikan's channel polarization for the frequency selective fading (FSF) channels with the generator matrix $Q_8$. In this scheme, a polar encoder and OFDM modulator are implemented sequentially at both the source node and relay nodes, the time reversion and complex conjugation operations are separately implemented at each relay node, and the successive interference cancellation (SIC) decoder, together with the cyclic prefix (CP) removal, is performed at the destination node. Use of the scheme shows that decoding at the relay without any delay is not required, which results in a lower complexity. The numerical result shows that the system coded by polar codes has better performance than currently used designs.

A Grouping Technique for Synchronous Digital Duplexing Systems (동기식 디지털 이중화 시스템을 위한 그룹핑 기법)

  • Ko, Yo-Han;Park, Chang-Hwan;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.341-348
    • /
    • 2009
  • In this paper, we propose a grouping technique for the SDD(Synchronous Digital Duplexing) based on OFDMA(Orthogonal Frequency Division Multiple Access). The SDD has advantages of increasing data efficiency and flexibility of resource since SDD can transmit uplink signals and downlink signals simultaneously by using mutual time information and mutual channel information, obtained during mutual ranging process. However, the SDD has a disadvantage of requiring additional CS to maintain orthogonality of OFDMA symbols when the sum of mutual time difference and mutual channel length between AP(access point) and SS(subscriber station) or among SSs are larger than CP length. In order to minimize the length of CS for the case of requiring additional CS in SDD, we proposes a grouping technique which controls transmit timing and receive timing of AP and SS in a cell by classifying them into groups. Performances of the proposed grouping technique are evaluated by computer simulation.