• Title/Summary/Keyword: COX-2 promoter

Search Result 28, Processing Time 0.033 seconds

[6]-Gingerol Inhibits Phorbol Ester-Induce d Expression of Cyclooxygenase-2 in Mouse Skin: p38 MAPK and p65/RelA as Possible Molecular Targets

  • Kim, Sue-Ok;Chun, Kyung-Soo;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Ginger (Zingiber officinale Roscoe, Zingiberaceae) has a wide array of pharmacologic effects. Our previous studies have demonstrated that [6]-gingerol, a major pungent ingredient of ginger, inhibits mouse skin tumor promotion and anchorage-independent growth of cultured mouse epidermal cells stimulated with epidermal growth factor. In this study, we have investigated the molecular mechanisms underlying chemopreventive effects of [6]-gingerol on mouse skin carcinogenesis. Cyclooxygenase-2 (COX-2), a key enzyme in the formation of prostaglandins, has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. The murine COX-2 promoter contains several transcriptional elements, particularly those involved in regulating inflammatory processes. One of the essential transcription factors responsible for COX-2 induction is NF-kappa B. Topical application of [6]-gingerol inhibited the COX-2 expression through suppression of NF-kappa B activation in phorbol ester-treated mouse skin. [6]-Gingerol, through down-regulation of p38 MAPK, abrogated the DNA binding activity of NF-kappa B by blocking phosphorylation of p65/RelA at the Ser 536 residue. These findings suggest that [6]-gingerol exerts an anti-tumor promotional activity through inhibition of the p38 MAPK-NF-kappa B siganling cascade in mouse skin.

  • PDF

Ginsenoside Rf inhibits cyclooxygenase-2 induction via peroxisome proliferator-activated receptor gamma in A549 cells

  • Song, Heewon;Park, Joonwoo;Choi, KeunOh;Lee, Jeonggeun;Chen, Jie;Park, Hyun-Ju;Yu, Byeung-Il;Iida, Mitsuru;Rhyu, Mee-Ra;Lee, YoungJoo
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.319-325
    • /
    • 2019
  • Background: Ginsenoside Rf is a ginseng saponin found only in Panax ginseng that affects lipid metabolism. It also has neuroprotective and antiinflammatory properties. We previously showed that Korean Red Ginseng (KRG) inhibited the expression of cyclooxygenase-2 (COX-2) by hypoxia via peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$). The aim of the current study was to evaluate the possibility of ginsenoside Rf as an active ingredient of KRG in the inhibition of hypoxia-induced COX-2 via $PPAR{\gamma}$. Methods: The effects of ginsenoside Rf on the upregulation of COX-2 by hypoxia and its antimigration effects were evaluated in A549 cells. Docking of ginsenoside Rf was performed with the $PPAR{\gamma}$ structure using Surflex-Dock in Sybyl-X 2.1.1. Results: $PPAR{\gamma}$ protein levels and peroxisome proliferator response element promoter activities were promoted by ginsenoside Rf. Inhibition of COX-2 expression by ginsenoside Rf was blocked by the $PPAR{\gamma}-specific$ inhibitor, T0070907. The $PPAR{\gamma}$ inhibitor also blocked the ability of ginsenoside Rf to suppress cell migration under hypoxia. The docking simulation results indicate that ginsenoside Rf binds to the active site of $PPAR{\gamma}$. Conclusions: Our results demonstrate that ginsenoside Rf inhibits hypoxia induced-COX-2 expression and cellular migration, which are dependent on $PPAR{\gamma}$ activation. These results suggest that ginsenoside Rf has an antiinflammatory effect under hypoxic conditions. Moreover, docking analysis of ginsenoside Rf into the active site of $PPAR{\gamma}$ suggests that the compound binds to $PPAR{\gamma}$ in a position similar to that of known agonists.

The Effect of 12-O-Tetradecanoylphorbol-13-acetate-induced COX-2 Expression by 3,3'-Diindolylmethane (DIM) on Human Mammary Epithelial Cells (3,3'-Diindolylmethane(DIM)이 Human Mammary Epithelial Cell에서 12-O-tetradecanoylphorbol-13-acetate에 의해 유도된 COX-2 발현에 미치는 영향)

  • Park, So Young;Shim, Jae-Hoon;Kim, Jong-Dae;YoonPark, Jung Han
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1701-1707
    • /
    • 2012
  • 3,3'-Diindolylmethane (DIM) is a major in vivo derivative of the putative anticancer agent indole-3-carbinol, which is present in cruciferous vegetables and has been reported to have anti-carcinogenic properties. An abnorrmally elevated level of cyclooxygenase-2 (COX-2) has been implicated in the pathogenesis of carcinogenesis. To investigate the mechanism by which DIM exhibits anti-carcinogenic effects, we investigated the effects of DIM on COX-2 expression in MCF-10A human mammary epithelial cells treated with the tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA). DIM inhibited TPA-induced COX-2 expression and suppressed the synthesis of prostaglandin $E_2$, one of the major products of COX-2. Nuclear factor-kappa B ($NF-{\kappa}B$) is a transcription factor known to play a role in regulation of COX-2 expression. Treatment of MCF-10A cells with TPA increased nuclear translocation of phospho-p65, with the maximal levels being reached at 1 hour, while DIM inhibited the TPA-induced nuclear translocation of phospho-p65. Overall, we demonstrated that DIM suppresses phorbol ester-induced $PGE_2$ production and COX-2 expression in MCF-10A cells. The reduction in COX-2 levels by DIM maybe mediated through inhibition of $NF-{\kappa}B$ signaling.

MODULATION OF THE ACTIVITY OF PRO-INFLAMMATORY ENZYMES, COX-2 AND iNOS, BY CHRYSIN DERIVATIVES

  • Cho, Hee-Yeong;Yun, Cheol-Won;Kong, Jae-Yang;Kim, Kyoung-Soon;Park, You-Mie;Lee, Sang-Hyun;Kim, Bak-Kwang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.286.1-286.1
    • /
    • 2003
  • Chrysin, a natural flavone compound contained in plants. has anti-inflammatory activity. Its anti-inflammatory effect has been previously explained in part by the suppression of promoter activities of inducible pro-inflammatory enzymes (cyclooxygenase-2 (COX-2) and inducible nitrogen synthase (iNOS)). Nitrate production triggered by the activation of lipopolysaccharides (LPS) was most highly suppressed by the treatment of chrysin, follwed by 5-hydroxy-7-methoxyflavone (Ch-2), 5,7-diacetylflavone (Ch-4) in cultured Raw 264.7 cells. (omitted)

  • PDF

Ethanolic Extract of Chondria crassicaulis Inhibits the Expression of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in LPS-Stimulated RAW 264.7 Macrophages

  • Kim, Yeon-Kye;Jeong, Eun-Ji;Lee, Min-Sup;Yoon, Na-Young;Yoon, Ho-Dong;Kim, Jae-Il;Kim, Hyeung-Rak
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.275-282
    • /
    • 2011
  • Inflammatory mediators such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) have been implicated in various inflammatory diseases. In this study, we investigated the anti-inflammatory activities of Chondria crassicaulis ethanolic extract (CCE) by measuring its effects on the expression of iNOS and COX-2 proteins in lipopolysaccharide (LPS)-treated RAW 264.7 murine macrophages. CCE significantly and dose-dependently inhibited the LPS-induced release of nitric oxide and prostaglandin $E_2$, and suppressed the expression of iNOS and COX-2 proteins in LPS-stimulated RAW 264.7 cells, without causing any cytotoxicity. It also inhibited the production of the pro-inflammatory cytokines such as interleukin (IL)-$1{\beta}$, IL-6, and tumor necrosis factor (TNF)-${\alpha}$ in LPS-stimulated RAW 264.7 cells. Moreover, treatment with CCE strongly suppressed nuclear factor-${\kappa}B$ (NF-${\kappa}B$) promoter-driven expression in LPS-treated RAW 264.7 cells. CCE treatment blocked nuclear translocation of the p65 subunit of NF-${\kappa}B$ by preventing proteolytic degradation of inhibitor of ${\kappa}B-{\alpha}$. These results indicate that CCE regulates iNOS and COX-2 expression through NF-${\kappa}B$-dependent transcriptional control, and identifies potential candidates for the treatment or prevention of inflammatory diseases.

Cyclooxygenase-2 Promoter 765C Increase of Digestive Tract Cancer Risk in the Chinese Population: a Meta-analysis

  • Xu, Yan-Song;Zhao, Bo;Long, Chen-Yan;Li, Hui;Lu, Xing;Liu, Gang;Tang, Xiao-Zhun;Tang, Wei-Zhong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4563-4566
    • /
    • 2014
  • Background: To evaluate relationship between the cyclooxygenase-2 promoter 765G/C polymorphism and digestive cancer risk in China. Materials and Methods: A literature search through February 2014 was performed using PubMed, Chinese Biomedical Literature Database (CBM) and China National Knowledge Infrastructure (CNKI) databases, and a meta-analysis was performed with RevMan 5.2 software for odds ratios and 95%CIs. Results: In total, 9 articles with 3,263 cases and 4,858 controls were included in this meta-analysis. The pooled OR (95%CIs) in the co-dominant model (GC vs GG) was 1.56 [1.19, 2.06], and in the dominant model ((CC+GC) vs GG), the pooled OR was 1.59 [1.21, 2.09] in overall cancers. In the subgroup analysis, stratified by cancer type, significant associations were found that the-765C allele had increased pancreatic cancer and gastric risk. No significant liver cancer and colorectal cancer risk of COX-2 -765G/C polymorphism was found. Conclusions: These findings suggest that COX-2-765*C is related to cancer susceptibility and may increase gastric and pancreatic cancer risk.

DNA Methylation of Multiple Genes in Gastric Cancer: Association with CpG Island Methylator Phenotype and Helicobocter pylori Infection (위암에서 유전자 메틸화와 CpG Island Methylator Phenotype 및 Helicobacter pylori균 감염과의 연관성)

  • Jun, Kyong-Hwa;Won, Yong-Sung;Shin, Eun-Young;Cho, Hyun-Min;Im, Myoung-Goo;Chin, Hyung-Min;Park, Woo-Bae
    • Journal of Gastric Cancer
    • /
    • v.6 no.4
    • /
    • pp.227-236
    • /
    • 2006
  • Purpose: Methylation of gene regulatory elements plays an important role in gene inactivation without genetic alteration. Gastric cancer is one of the tumors that exhibit a high frequency of CpG island hypermethylation. The purpose of this study was to investigate the occurrence of CpG island hypermethylation in gastric carcinoma in relation to H. pylori infection, CIMP and clincopathologic variables. Materials and Methods: We investigated the promoter methylation Status of six genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin) and CIMP in 36 gastric carcinoma tissues as well as in nontumor tissues. CIMP status was investigated by examining the methylation status of MINT 1, 2, 12, 25 and 31. The methylation status of the promoter was examined by methylation-specific PCR (MSP) and H. pylori infection was examined by histological diagnosis after staining with Warthin-Starry silver. Results: Among the 36 gastric carcinoma tissues, DNA hypermethylation was detected in the following frequencies: 14 (38.9%) for p14, 13 (36.1%) for p16, 8 (22.2%) for MGMT, 10 (27.8%) for COX-2, 21 (58.3%) for E-cadherin, and 6 (16.7%) for hMLH1. The frequencies for MINT1 and MINT25 hypermethylation were significantly higher in tumor tissues than in nontumor tissues. 16 (44.4%) of the 36 gastric carcinoma tissues were positive for the CIMP CIMP-H tumors were associated with older patients and larger tumor size than CIMP-L tumors. We found a significant association between the presence of the CIMP and hypermethylation of p16. Hypermethylation of p16 and MINT2 were significantly different when compared by age. MINT1 gene methylation was significantly associated with H. pylori infection (P=0.004). Conclusion: Our results suggest that aberrant hypermethylation of multiple tumor related genes (hMLH1, p16, p14, COX-2, MGMT, E-cadherin, MINT1, 2, 12, 25, 31) occurs frequently in gastric carcinoma tissues. The hypermethylation of MINT1 was significantly higher in the tumor tissues and was associated with H. pylori infection.

  • PDF

In Vitro Study of Anti-inflammatory and Analgesic Effects of Salvia Miltiorrhiza (SM) Extracts Using Luciferase Reporter Gene Assay (Luciferase reporter gene assay를 이용한 단삼(丹蔘)추출물의 소염, 진통작용에 대한 in vitro 연구)

  • Kim, Hee-Eun;Min, Sang-Yeon;Kim, Jang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.88-99
    • /
    • 2008
  • Objectives: In order to identify the anti-inflammatory and analgesic properties of Salvia miltiorrhiza (Dan-Sam), widely used in Korean traditional medicine, an in vitro screening system was designed using pGL3, a luciferase reporter vector, and the tumor necrosis factor (TNF)-${\alpha}$ and cyclooxygenase (COX)-2 as target genes. Methods: The promoter regions of each gene were generated by PCR using the human chromosome as template DNA, and inserted into pGL3 vector with Kpn I and Hind III. The final construct was transfected into human myelomonocytic leukemia cells (U-937) that could be differentiated and activated by phorbol 12-myristate 13-acetate (PMA) or lipopolysaccharide (LPS). Using this system, the anti-inflammatory and analgesic effects of several herbal extracts regarded to have the medicinal effects of diminishing body heat and complementing Qi were tested. The chemicals PD98059 and berberine chloride were used as controls of the transcriptional inhibitors of TNF-${\alpha}$ and COX-2, respectively. Results: Salvia miltiorrhiza (Dan-Sam) demonstrated significant decrease of TNF-${\alpha}$ and COX-2 mRNA in the in vitro assay system. In MTT assay, Salvia miltiorrhiza (Dan-Sam) did not significantly inhibit the survival and proliferation of human myelomonocytic leukemia cells (U-937). Conclusions: Salvia miltiorrhiza (Dan-Sam) was found to exhibit the significant medicinal properties of anti-inflammatory and analgesic effects.

  • PDF

Phosphorylation of the Nucleocapsid Protein of Bovine Coronavirus Expressed with a Recombinant Baculovirus Vector

  • Yoo, dongwan;Graham-J.Cox
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.122-128
    • /
    • 1992
  • Post-translational modifications of the nucleocapsid protein of bovine coronavirus (Quebec strain) were investigated. Coronavirions were radiolabelled in vivo with inorganic $[^{32}P]$orthophosphate and analysed by SDS-PAGE, followed by autoradiography. A single polypeptide with a migration rate of 55 KDa was identified by metabolic phosphate labelling, demonstrating that the nucleocapsid protein of bovine coronavirus was a phosphoprotein. A gene encoding the nucleocapsid protein was inserted immediately downstream from the polyhedrin promoter of Autographa californica nuclear polyhedrosis baculovirus. Spodoptera frugiperda cells infected with this recombinant baculovirus synthesized a 55 KDa polypeptide, as demonstrated by immunoprecipitation with anti-nucleocapsid monoclonal antibody. The recombinant nucleocapsid protein synthesized in Spodoptera cells could also be labelled by $[^{32}P]$orthophosphate. Phosphoamino acid analysis showed that both serine and threonine residues were phosphorylated in authentic, as well as in recombinant nucleocapsid proteins, with a relative phosphorylation ratio of 7:3. Our studies demonstrated that the nucleocapsid protein of bovine coronavirus was a serine and threonine-phosphorylated protein and that Spodoptera insect cells were able to properly phosphorylate the relevant foreign proteins.

  • PDF