• Title/Summary/Keyword: COX-2 inhibition

Search Result 535, Processing Time 0.027 seconds

Anti-inflammatory Activities of GyejigaChulBuTang on Lipopolysaccharide-stimulated RAW264.7 Cells (LPS에 의해 자극된 RAW264.7 세포에 대한 계지가출부탕의 항염증활동)

  • Jeong, Min-Jeong;Lee, Seung-Yeon;Yu, Sun-Ae;Kang, Kyung-Hwa
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.28 no.3
    • /
    • pp.47-58
    • /
    • 2014
  • Objectives GyejigaChulBuTang (GCBT) is a prescription used to treat acute and chronic arthritis in Korea, China, and Japan. This study assessed the anti-inflammatory and anti-oxidant activities of GCBT on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Methods Raw264.7 cells were pretreated with or without GCBT for 1 hour prior to incubation with LPS. Anti-inflammatory activity of GCBT was evaluated with reference to gene expression and production levels of proinflammatory cytokines ($TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF and $INF{\gamma}$) and inflammatory mediators (iNOS, COX-2, NO and $PGE_2$). In addition, intracellular ROS generation and signal transduction of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}/NF{\kappa}B$ was investigated. Results Prior treatment with GCBT inhibited elevation of $TNF{\alpha}$, IL-$1{\beta}$, IL-6, GM-CSF, $INF{\gamma}$, NO and $PGE_2$, together with their cognate mRNAs in a dose-dependent manner. Intracellular ROS contents were similarly reduced. These effects were due to inhibition of LPS-induced phosphorylation of MAPK family, PI3K/Akt and $I{\kappa}B{\alpha}$ as well as nuclear translocation of $NF{\kappa}B$. Conclusions GCBT suppresses pro-inflammatory mediators. GCBT has potential in the treatment of juvenile rheumatoid arthritis associated with inflammation.

The Root from Heracleum moellendorffii Exerts Anti-Inflammatory Activity via the Inhibition of NF-κB and MAPK Signaling Activation in LPS-Stimulated RAW264.7 Cells

  • Park, Su Bin;Kim, Ha Na;Kim, Jeong Dong;Park, Gwang Hun;Son, Ho-Jun;Eo, Hyun Ji;Song, Jeong Ho;Jeong, Hyung Jin;Jeong, Jin Boo
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.96-96
    • /
    • 2018
  • Although the roots of Heracleum moellendorffii (HM-R) have been long treated for inflammatory human diseases, scientific evidence for the anti-inflammatory activity of HM-R is not sufficient. In this study, we investigated anti-inflammatory activity and mechanism of action of HM-R in LPS-stimulated RAW264.7 cells. HM-R blocked LPS-induced NO and PGE2 production, but not HM-L. HM-R inhibited LPS-induced overexpression of iNOS, COX-2, $IL-1{\beta}$ and IL-6 in RAW264.7 cells. HM-R inhibited LPS-induced $NF-{\kappa}B$ signaling activation through blocking $I{\kappa}B-{\alpha}$ degradation and p65 nuclear accumulation. In addition, HM-R inhibited MAPK signaling activation by attenuating the phosphorylation of ERK1/2, p38 and JNK. Furthermore, HM-R inhibited attenuated LPS-mediated overexpression of the osteoclast-specific factors such as NFATc1, cathepsin K, MCP-1 and TRAP. These results indicate that HM-R may exert anti-inflammatory activity by inhibiting $NF-{\kappa}B$ and MAPK signaling activation. From these findings, HM-R has potential to be a candidate for the development of chemopreventive or therapeutic agents for the inflammation and inflammatory diseases.

  • PDF

Skin Permeation Effects of Meloxicam Gel on Ultrasound Parameters by Phonophoresis (초음파의 매개변수에 따른 Meloxicam Gel의 경피투과 촉진효과)

  • Choi, Sug-Ju;Yoon, Se-Won;Jung, Dae-In;Kim, Young-Il;Jeong, Jin-Gyu;Kim, Tae-Youl
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.4 no.1
    • /
    • pp.49-61
    • /
    • 2006
  • This study conducted the following experiment to examine and compare transdermal permeation effects according to parameters of ultrasound and physiochemical characteristics of meloxicam. Permeation by ultrasound among these experimental drugs was relatively higher and it was involved in COX-2 inhibition unlike other drugs. Recently use of oral agents has been rapidly increased, but it was not generalized to transdermal agent and this study selected meloxicam that transdermal permeation research using ultrasound was not performed and conducted transdermal permeation experiment with skin of hairless mouse and analyzed permeation with HPLC. It made gel first and analyzed permeation depending on frequency and intensity of ultrasound of meloxicam with the same experimental procedures as the above experiment. The results of this study can be summarized as follows. Transdermal permeation by ultrasound frequency was higher in 1.0 MHz and it was higher as intensity increased. In comparison by parameters of ultrasound, there was similar permeation in $1.0\;W/cm^2$ of continuous mode and $3.0\;W/cm^2$ of pulsed mode and it was effective to high intensity for using pulsed mode. It was found that duty cycle of ultrasound affected transdermal permeation in meloxicam gel used in this experiment and transdermal permeation was higher in used ultrasound as phonophoresis than non-ultrasound for anti-inflammatory effects.

  • PDF

Poncirin alleviates the symptoms of dextran sulfate sodium-induced colitic mice (Poncirin의 dextran sulfate sodium 유도 마우스 궤양성 대장염 증세 감소 효과)

  • Kim, Jong-Bin;Cho, Woong;Han, Ar-Reum;Seo, Eun-kyung;Lee, Kyung-Tae
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.2
    • /
    • pp.104-109
    • /
    • 2008
  • We previously reported that anti-inflammatory properties of poncirin, isolated from fruit of Poncirus trifoliata, might be the result from the inhibition of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis $factor-{\acute{a}}$ ($TNF-{\alpha}$) and interlukin-6 (IL-6) expression via the down-regulation of $NF{-\kappa}B$ binding activity. In this study, we investigated whether poncirin has an inhibitory effect on the production of pro-inflammatory mediators ex vivo and whether poncirin could relieve the symptoms of dextran sulfate sodium (DSS)-induced colitis in mice model of inflammatory bowel disease. Poncirin significantly inhibited the productions of NO, IL-6 and $TNF-{\alpha}$ in lipopolysaccharide (LPS)-induced mouse peritoneal macrophage. In addition, poncirin-treated mice when compared to control mice not receiving treatment recovered better from the weight loss caused by DSS-induced colitis. Changes in disease activity index (DAI) of poncirin-treated mice were also more favorable than for control mice and were comparable with mice treated with a typical anti-inflammatory-drug, 5-aminosalichylic acid (5-ASA). In addition, suppression of plasma NO and IL-6 productions of poncirin-treated mice was also observed in DSS-induced colitis. These results suggest that poncirin has potentially useful anti-inflammatory effects mediated by suppression of inflammatory mediator productions.

Preventive effect of fermented black ginseng against cisplatin-induced nephrotoxicity in rats

  • Jung, Kiwon;An, Jun Min;Eom, Dae-Woon;Kang, Ki Sung;Kim, Su-Nam
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.188-194
    • /
    • 2017
  • Background: Fermented black ginseng (FBG) is processed ginseng by the repeated heat treatment and fermentation of raw ginseng. The protective effect and mechanism of FBG on cisplatin-induced nephrotoxicity was investigated to evaluate its therapeutic potential. Methods: The free radical scavenging activity of FBG was measured using 1,1-diphenyl-2-picrylhydrazyl (DPPH). In addition, the protective effect against cisplatin-induced renal damage was tested in rats. FBG was orally administered every day at a dose of 150 mg/kg body weight for 10 d, and a single dose of cisplatin was administered intraperitoneally (7.5 mg/kg body weight) with 0.9% saline on the $4^{th}$ d. Results: The DPPH radical-scavenging activity of FBG ($IC_{50}=384{\mu}g/mL$) was stronger than that of raw ginseng. The improved DPPH radical-scavenging activity was mediated by the generation phenolic compounds. The decreased cell viability by cisplatin was recovered significantly after treatment with FBG in a dose-dependent manner. Then, the protective effect of FBG on cisplatin-induced oxidative renal damage was investigated in rats. The decreased creatinine clearance levels, which are a reliable marker for renal dysfunction in cisplatin-treated rats, were reduced to the normal level after the administration of FBG. Moreover, FBG showed protective effects against cisplatin-induced oxidative renal damage in rats through the inhibition of $NF-{\kappa}B/p65$, COX-2, and caspase-3 activation. Conclusion: These results collectively show that the therapeutic evidence for FBG ameliorates the nephrotoxicity via regulating oxidative stress, inflammation, and apoptosis.

Glycosaminoglycan Degradation-Inhibitory Lactic Acid Bacteria Ameliorate 2,4,6-Trinitrobenzenesulfonic Acid-Induced Colitis in Mice

  • Lee, Bo-Mi;Lee, Jung-Hee;Lee, Hye-Sung;Bae, Eun-Ah;Huh, Chul-Sung;Ahn, Young-Tae;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.6
    • /
    • pp.616-621
    • /
    • 2009
  • To evaluate the effects of lactic acid bacteria (LAB) in inflammatory bowel diseases (IBD), we measured the inhibitory effect of several LAB isolated from intestinal microflora and commercial probiotics against the glycosaminoglycan (GAG) degradation by intestinal bacteria. Bifidobacterium longum HY8004 and Lactobacillus plantarum AK8-4 exhibited the most potent inhibition. These LAB inhibited colon shortening and myeloperoxidase production in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitic mice. These LAB also blocked the expression of the proinflammatory cytokines, IL-$1{\beta}$ and TNF-$\alpha$, as well as of COX-2, in the colon. LAB also blocked activation of the transcription factor, NF-${\kappa}B$, and expression of TLR-4 induced by TNBS. In addition, LAB reduced the TNBS-induced bacterial degradation activities of chondroitin sulfate and hyaluronic acid. These findings suggest that GAG degradation-inhibitory LAB may improve colitis by inhibiting inflammatory cytokine expression via TLR-4-linked NF-${\kappa}B$ activation and by inhibiting intestinal bacterial GAG degradation.

Protopanaxadiol modulates LPS-induced inflammatory activity in murine macrophage RAW264.7 cells

  • Lee, Whi-Min;Kim, Sung-Dae;Kim, Kil-Soo;Song, Yong-Bum;Kwak, Yi-Seong;Cho, Jae-Youl;Park, Hwa-Jin;Oh, Jae-Wook;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.30 no.4
    • /
    • pp.181-187
    • /
    • 2006
  • Protopanaxadiol (PPD) is a mixture of protopanaxadiol type saponins with a dammarane skeleton, from Korean red ginseng (Panax ginseng C.A. Meyer; Araliaceae). Korean ginseng is well-known herb to treat almost all kinds of diseases in Oriental medicine. This herb was particularly prescribed for treatment various inflammatory diseases, including rheumatoid arthritis, atherosclerosis, and diabetes mellitus, for centuries. To understand the efficacy of ginseng against inflammatory diseases, we aimed to show anti-inflammatory activities of the PPD in murine macrophage cell line, RAW264.7 cells using nitric oxide (NO) production assay and the expressions of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), and IL-6, and monocyte chemotactic protein-1 (MCP-1). We found that PPD saponin significantly blocked LPS ($1{\mu}g/ml$)-induced NO production in a dose-dependent manner. In addition, PPD abrogated the expressions of LPS-induced pro-inflammatory cytokines, such as IL-$1{\beta}$ and MCP-1. Moreover, cyclooxygenase (COX)-2, a critical enzyme to produce prostaglandin E2 (PGE2), was significantly inhibited by PPD in LPS-activated RAW264.7 cells. Taken together, these results suggested that anti-inflammatory efficacy of Korean red ginseng on inflammatory diseases is, at least, due to the NO inhibitory activity and the inhibition of the expressional level of inflammatory cytokines and/or mediators.

L-AHG-mediated Suppression of M1 Polarization and Pro-inflammatory Signaling Pathways in LPS-stimulated RAW264.7 Macrophages (LPS에 의해 자극된 RAW264.7 대식세포에서 L-AHG에 의한 M1 분극화 및 친염증 신호 경로의 억제)

  • Won Young Jang;Shin Young Park;Ki Youn Kim;Do Youn Jun;Young-Seuk Bae;Young Ho Kim
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.443-452
    • /
    • 2024
  • This study aimed to examine the influence of 3,6-anhydroxygalactose (L-AHG) on the pro-inflammatory M1 polarization and pro-inflammatory responses observed in the RAW264.7 mouse macrophage cell line following stimulation with lipopolysaccharides (LPS). L-AHG exhibited a significant and dose-dependent inhibition of inducible nitric oxide synthase (iNOS) expression, a hallmark of M1 polarization, and subsequent NO production in LPS-stimulated RAW264.7 cells. Furthermore, the LPS-induced upregulation of cyclooxygenase-2 (COX-2), which drives the production of prostaglandin E2, an inflammatory mediator, was also inhibited by L-AHG. L-AHG did not affect the LPS-triggered Toll-like receptor 4 (TLR4)-mediated pro-inflammatory signaling pathway, which culminated in the activation of transforming growth factor-β-activated kinase 1 (TAK1). However, it was observed to inhibit the generation of reactive oxugen species (ROS) in a dose-dependent manner, as well as the TAK1-driven activation of JNK and p38 MAPK. Given that the active p38 MAPK is known to contribute to the assembly of active nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which catalyzes the intracellular generation of pro-inflammatory ROS in LPS-stimulated macrophages, the dose-dependent reduction in the LPS-induced ROS generation by L-AHG may be mainly due to the prevention of TAK1-driven activation of p38 MAPK. Together, these results demonstrate that the L-AHG-mediated inhibition of the TAK1-JNK/p38 MAPK activation phase of the pro-inflammatory signaling pathway in LPS-stimulated RAW264.7 cells by L-AHG represents a promising mechanism for suppressing M1 polarization and pro-inflammatory responses in macrophages.

Anti-Inflammatory Activity of Ethanol Extract of Sargassum miyabei Yendo via Inhibition of NF-κB and MAPK Activation (NF-κB와 MAPKs 활성 저해를 통한 미야베 모자반(Sargassum miyabei Yendo) 에탄올 추출물의 항염증 활성)

  • Kim, Min-Ji;Bae, Nan-Young;Kim, Koth-Bong-Woo-Ri;Park, Sun-Hee;Jang, Mi-Ran;Im, Moo-Hyeog;Ahn, Dong-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.442-451
    • /
    • 2016
  • The aim of this study was to investigate the anti-inflammatory effect of Sargassum miyabei Yendo ethanol extract (SMYEE) using RAW 264.7 cells and croton oil-induced Balb/c mice. SMYEE inhibited the production of pro-inflammatory cytokines [interleukin (IL)-6, tumor necrosis factor $(TNF)-{\alpha}$, and $IL-1{\beta}$] and nitric oxide in lipopolysaccharide (LPS)-induced inflammatory response. In addition, SMYEE suppressed the expression of inducible nitric oxide, cyclooxygenase-2, and nuclear factor-kappa B. Further, SMYEE inhibited the expression of mitogen-activated protein kinases (MAPKs), such as extra cellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase. In ear edema test, edema formation in the SMYEE treatment was lower than that in the positive control and was similar to that in the prednisolone treatment group. Photomicrographs of mice ear tissue showed a reduction in dermal thickness and number of infiltrated mast cells. Therefore, our results indicate that SMYEE exerts an anti-inflammatory effect via inhibition of nuclear factor ${NF}-{\kappa}B$ and MAPK activation and can be used as a natural source of anti-inflammatory compounds.

Effects of Root of Taraxacum coreanum Nakai on the Inhibition of Inflammation and Oxidative Stress Induced by Lipopolysaccharide in ICR Mice (흰 민들레 뿌리의 항염증 및 산화 스트레스 개선 효과)

  • Cho, Byung-Je;Kim, Mijeong;Song, Yeong Ok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.12
    • /
    • pp.1763-1770
    • /
    • 2015
  • The effects of root of Taraxacum coreanum Nakai (TC), on the suppression of inflammation and oxidative stress induced by lipopolysaccharide (LPS) in ICR mice were studied. LPS (10 mg/kg body weight) was injected into ICR mice in between two consecutive oral administrations. Hot water extract of fresh TC (HWETC) was administered to mice immediately before and 24 h after LPS injection. The animal groups used in this study were as follows: NOR group (PBS injection, DW administration), CON group (LPS injection, DW administration), and TC group (LPS injection, 1.4 g/kg bw of HWETC administration). Mice in the CON group lost weight due to inflammation induced by LPS, while the body weight of the TC group mice increased significantly, indicating that inflammation was inhibited by HWETC administration. Compare with the CON group, plasma and hepatic triglyceride, reactive oxygen species, peroxynitrite, and hepatic thiobarbituric acid reactive substances concentrations of the TC group decreased significantly (P<0.05). The protein expression of a pro-inflammatory transcription factor, nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) and its target enzyme, cyclooxygenase 2, increased in response to LPS injection, but was suppressed by HWETC administration (P<0.05). In conclusion, HWETC appears to ameliorate the oxidative stress and inflammatory responses induced by LPS via inhibition of $NF-{\kappa}B$ activation.