• Title/Summary/Keyword: COX growth inhibition

Search Result 59, Processing Time 0.032 seconds

Melittin-induced Aapoptosis is Associated with Inhibition of COX-2 and hTERT Expression in Human Lung Carcinoma A549 Cells (약침용 봉독성분 melittin의 영향에 의한 인체 폐암세포의 apoptosis 유도)

  • Ahn, Chang-beohm;Im, Chun-woo;Youn, Hyoun-min;Park, Su-jin;Choi, Yung-hyun
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.93-106
    • /
    • 2003
  • Objective : To investigate the possible molecular mechanism(s) of melittin as a candidate of anti-cancer drug, we examined the effects of the compound on the growth of human lung carcinoma cell line A549. Methods: MTT, morphological changes, DAPI staining, Western blot, RT-PCR and in vitro prostaglandin E2 (PGE2) accumulation assays were performed. Results: The anti-proliferative effect by melittin treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. Melittin induced apoptotic cell death in a concentration-dependent manner, which was associated with inhibition or degradation of apoptotic target proteins such as ${\beta}$-catenin, poly(ADP-ribose) polymerase(PARP) and phospholipase $C-{\gamma}1(PLC-{\gamma}1)$. Melittin treatment inhibited the expression of cyclooxygenase-2(COX-2) and accumulation of PGE2 in aconcentration-dependent fashion. In addition, Melittin treatment induced the down-regulation of telomerase reverse transcriptase(hTERT) and proto-oncogene c-myc expression of A549 cells. Conclusions: Taken together, these findings suggest that melittin-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products, and melittin may have therapeutic potential in human lung cancer.

  • PDF

Down-regulation of COX-2 and hTERT Expression by Healthful Decoction Utilizing Phellinus Linteus in Human Lung Carcinoma Cells (상황을 이용한 한의학적 보건기능 개선제에 의한 인체폐암세포의 증식억제에 관한 연구)

  • Park Cheol;Lee Yong Tae;Jeong Young Kee;Choi Byung Tae;Lee Sang Hyeon;Choi Yung Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.500-506
    • /
    • 2004
  • The objective of the present study was to investigate the effects of aqueous extract from the healthful decoction utilizing Phellinus linteus (HDPL) on the growth of human lung carcinoma A549 cells. HDPL treatment declined the cell viability of A549 cells in a concentration-dependent manner and the anti-proliferative effects by HDPL treatment were associated with morphological changes such as membrane shrinking and cell rounding up. HDPL treatment did not affect the distribution of the cell cycle. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1 in HDPL-treated A549 cells were remained unchanged. However, HDPL treatment inhibited the expression of cyclooxygenase-2 (COX-2) mRNA and protein in a concentration-dependent fashion. Additionally, the expression of human telomerase reverse transcriptase (hTERT), a main determinant of the telomerase enzymatic activity, was progressively down-regulated by HDPL treatment. Taken together, these findings suggest that HDPL-induced inhibition of human lung cancer cell proliferation is associated with the inhibition of several major growth regulatory gene products, such as COX-2 and hTERT, and HDPL may have therapeutic potential in human lung cancer.

Antiproliferative effect of Chungjogupae-tang treatment was associated with the inhibition of prostaglandin E2 release and Telomere active in human lung carcinoma cells (인체폐암세포에서의 prostaglandin E2 생성과 Telomere 활성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Kim, Hoon;Park, Dong-Il
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.19 no.2
    • /
    • pp.26-39
    • /
    • 2006
  • Objective : The effect of water extract of Chungjogupae-tang (CJGPT) was investigated on the growth of human lung carcinoma A549 cells. Methods : MTT assay and fluorescent microscope performed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition the quantitative RT-PCR was used to examine to lung cancer cells growth and Progtaglandin E2 and Telomerase activity were measured Results : Exposure of A549 cells to CJGPT resulted in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiuoliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21(WAF1/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1, which was correlated with a decrease in protaglandin E2 (PGE2) synthesis. CJGPT treatment also inhibited the levels of human telomerase reverse transcriptase (hTERT) and telomerase-associated protein (TEP)-1 mRNA expression, however the activity of telomerase was slightly increased by CJGPT treatment. Conclusion : These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

  • PDF

Antiproliferative Effect of Chungjogupae-tang Treatment was Associated with the Inhibition of Prostaglandin E2 Release in Human Lung Carcinoma Cells (인체폐암세포의 증식 및 prostaglandin E2 생성에 미치는 청조구폐탕의 영향에 관한 연구)

  • Im, Jae-Hyung;Kim, Hoon;Byun, Mi-Kyeon;Kam, Chul-Woo;Park, Dong-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.966-972
    • /
    • 2006
  • The effect of water extract of Chungjogupae-tang (CJGPT) was investigated _on the growth of human lung carcinoma A549 cells. Methods: MTT assay and fluorescent microscope peformed to compare and examine the efficacy of CJGPT treatment on the cytostaticity of lung cancer cells in proportion to time and doses, and DAPI staining and Western blot analysis were used to examine their effect on apoptosis. In addition, the quantitative RT-PCR was used to examine to lung cancer cells growth, and Prostaglandin E2 activity were measured. Results: Exposure of A549 cells to CJGPT respited in the growth inhibition and apoptosis in a dose-dependent manner as measured by MTT assay and fluorescent microscope. The antiproliferative effect by CJGPT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. CJGPT treatment resulted in an up-regulation of cyclin-dependent kinase inhibitor p21 (WAFl/CIPl) in a p53-independent fashion. We found that CJGPT treatment decreased the levels of cyclooxygenase (COX)-2 and inducible nitric oxide synthease (iNOS) expression without significant changes in the expression of COX-1 , which was correlated with a decrease in prostaglandin E2 (PGE2) synthesis. Conclusion: These findings suggested that CJGPT-induced inhibition of human lung carcinoma A549 cell growth was connected with the induction of apoptotic cell death and the results provided important new insights into the possible molecular mechanisms of the anti-cancer activity of CJGPT.

[6]-Gingerol Inhibits Phorbol Ester-Induce d Expression of Cyclooxygenase-2 in Mouse Skin: p38 MAPK and p65/RelA as Possible Molecular Targets

  • Kim, Sue-Ok;Chun, Kyung-Soo;Surh, Young-Joon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.05a
    • /
    • pp.95.1-95
    • /
    • 2003
  • Ginger (Zingiber officinale Roscoe, Zingiberaceae) has a wide array of pharmacologic effects. Our previous studies have demonstrated that [6]-gingerol, a major pungent ingredient of ginger, inhibits mouse skin tumor promotion and anchorage-independent growth of cultured mouse epidermal cells stimulated with epidermal growth factor. In this study, we have investigated the molecular mechanisms underlying chemopreventive effects of [6]-gingerol on mouse skin carcinogenesis. Cyclooxygenase-2 (COX-2), a key enzyme in the formation of prostaglandins, has been recognized as a molecular target of many chemopreventive as well as anti-inflammatory agents. The murine COX-2 promoter contains several transcriptional elements, particularly those involved in regulating inflammatory processes. One of the essential transcription factors responsible for COX-2 induction is NF-kappa B. Topical application of [6]-gingerol inhibited the COX-2 expression through suppression of NF-kappa B activation in phorbol ester-treated mouse skin. [6]-Gingerol, through down-regulation of p38 MAPK, abrogated the DNA binding activity of NF-kappa B by blocking phosphorylation of p65/RelA at the Ser 536 residue. These findings suggest that [6]-gingerol exerts an anti-tumor promotional activity through inhibition of the p38 MAPK-NF-kappa B siganling cascade in mouse skin.

  • PDF

Screening of Anticancer Potential of Celecoxib and its Derivatives (셀레콕시브 및 그 합성유도체들의 항암활성 스크리닝)

  • Park, Jeong-Ran;Kang, Jin-Hyoung;Kuh, Hyo-Jeong;Noh, Ji-Young;Ryu, Hyung-Chul;Park, Sang-Wook;Ko, Dong-Hyun;Cho, Il-Hwan;Lee, Joo-Y.;Hwang, Daniel-H.;Kim, In-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.105-112
    • /
    • 2003
  • Selective COX (cyclooxygenase)-2 inhibitors including celecoxib have been shown to induce apoptosis and cell cycle changes in various tumor cells. New inhibitors are recently being developed as chemomodulating agents. We evaluated celecoxib and screened 150 synthetic compounds for anti-proliferative activities in vitro. Effects of celecoxib on COX activity, cell growth, cell cycle distribution, and apoptosis induction were determined in A549 COX-2 overexpressing human non-small cell lung cancer (NSCLC) cells. The COX inhibition of celecoxib increased with concentration up to 82% at $1\;{\mu}M$ after 24 hr exposure. Forty ${\mu}M$ and $50\;{\mu}M$ of ce1ecoxib induced $G_1$ arrest, and TUNEL-positive apoptotic cells, respectively. Among 150 compounds, several compounds were selected for having greater COX-2 inhibitory activity and higher selectivity than celecoxib with growth inhibitory activity. Celecoxib showed concentration-dependent COX inhibitory activity, and ability to induce cell cycle arrest and apoptosis in human NSCLC cells in vitro. Among synthetic analogues screened, several compounds showed promising in vitro activity as COX-2 inhibitory anticancer agents, which warrant further evaluation in vitro and in vivo.

The Modulation of Radiosensitivity by Combined Treatment of Selective COX-2 Inhibitor, NS 398 and EGF Receptor Blocker AG 1478 in HeLa Cell Line (선택적 COX-2 억제제 NS 398과 EGF 수용체 차단제 AG 1478의 복합투여가 HeLa 세포주의 방사선 감수성에 미치는 영향)

  • Youn Seon Min;Oh Young Kee;Kim Joo Heon;Park Mi Ja;Seong In Ock;Kang Kimun;Chai Gyuyong
    • Radiation Oncology Journal
    • /
    • v.23 no.1
    • /
    • pp.51-60
    • /
    • 2005
  • Purpose : Selective inhibition of multiple molecular targets may improve the antitumor activity of radiation. Two specific inhibitors of selective cyclooxygenase-2 (COX-2) and epidermal growth factor receptor (EGFR) were combined with radiation on the HeLa cell line. To investigate cooperative mechanism with selective COX-2 inhibitor and EGFR blocker, in vitro experiments were done. Materials and Methods : Antitumor effect was obtained by growth inhibition and apoptosis analysis by annexin V-Flous method. Radiation modulation effects were determined by the clonogenic cell survival assay. Surviving fractions at 2 Gy ($SF_2$) and dose enhancement ratio at a surviving fraction of 0.25 were evaluated. To investigate the mechanism of the modulation of radiosensitivity, the cell cycle analyses were done by flow cytometry. The bcl-2 and bax expressions were analyzed by western blot. Results : A cooperative effect were observed on the apoptosis of the HeLa ceil line when combination of the two drugs, AG 1478 and NS 398 with radiation at the lowest doses, apoptosis of $22.70\%$ compare with combination of the one drug with radiation, apoptosis of $8.49\%$. In cell cycle analysis, accumulation of cell on $G_0/G_l$ phase and decrement of S phase fraction was observed from 24 hours to 72 hours after treatment with radiation, AG 1478 and NS 398. The combination of NS 398 and AG 1478 enhanced radiosensitivity on a concentration-dependent manner in HeLa cells with dose enhancement ratios of 3.00 and $SF_2$ of 0.12 but the combination of one drug with radiation was not enhanced radlosensitivity with dose enhancement ratios of 1.12 and SF2 of 0.68 (p=0.005). The expression levels of bcl-2 and bax were reduced when combined with AG 1478 and NS 398. Conclusion : Our results indicate that the selective COX-2 inhibitor and EGFR blocker combined with radiation have potential additive or cooperative effects on radiation treatment and may act through various mechanisms including direct inhibition of tumor cell proliferation, suppression of tumor cell cycle progression and inhibition of anti-apoptotic proteins.

Piceatannol-Induced G1 Arrest of the Cell Cycle is Associated with Inhibition of Prostaglandin E2 Production in Human Gastric Cancer AGS Cells (Piceatannol에 의한 AGS 인체 위암세포의 G1 Arrest 및 Prostaglandin E2 생성의 억제)

  • Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.7
    • /
    • pp.907-913
    • /
    • 2012
  • Piceatannol (trans-3,4,3',5'-tetrahydroxystilbene) is a polyphenol detected in grapes, rhubarb, and sugarcane. Although recent experimental data revealed that this compound is known to exhibit immunosuppressive and antitumorigenic activities in several cell lines, the molecular mechanisms underlying anticancer activity are poorly understood. In the present study, we investigated possible further mechanisms by which piceatannol exerts its anti-proliferative action in cultured human gastric cancer AGS cells. Piceatannol treatment resulted in the inhibition of growth and G1 arrest of the cell cycle in a concentration-dependent manner, as determined by MTT assay and flow cytometry analysis. The induction of G1 arrest by piceatannol was associated with the modulation of cyclin-dependent kinases (Cdks) and cyclins, up-regulation of the expression of Cdk inhibitor p21 (WAF1/CIP1) in both transcriptional and translational levels, and the inhibition of phosphorylation of retinoblastoma proteins and E2F1 expression. In addition, piceatannol treatment caused a progressive decrease in the expression levels of cyclooxygenase (COX)-2 without significant changes in the levels of COX-1, which was correlated with a decrease in prostaglandin $E_2$ synthesis.

Simultaneous Blockage of Epidermal Growth Factor Receptor and Cyclooxygenase-2 in a Human Xenotransplanted Lung Cancer Model

  • Mu, Xiao-Yan;Dong, Xue-Li;Sun, Jie;Ni, Yu-Hua;Dong, Zhang;Li, Xi-Li;Sun, Er-Lian;Yi, Zhou;Li, Gao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.69-73
    • /
    • 2014
  • The effects of erlotinib combined with celecoxib in a lung cancer xenograft model were here explored with a focus on possible mechanisms. A xenotransplanted lung cancer model was established in nude mice using the human lung cancer cell A549 cell line and animals demonstrating tumour growth were randomly divided into four groups: control, erlotinib, celecoxib and combined (erotinib and celecoxib). The tumor major axis and short diameter were measured twice a week and after 40 days tissues were collected for immunohistochemical analyses of Bcl-2 and Bax positive cells and Western-blotting analyses for the epidermal growth factor recepto (EGFR), P-EGFR, and cyclooxygenase-2 (COX-2). Tumor size in the combined group was smaller than in the others (p<0.01) and the percentage of Bcl-2 positive cells was fewer in most cases (p<0.01), while that of Bax positive cells was greater than in the erlotinib and celecoxib groups (P>0.05). Western blotting showed decreased expression of P-EGFR and COX-2 with both erlotinib and celecoxib treatments, but most pronouncedly in the combined group (P<0.05). Simultaneous blockage of the EGFR and COX-2 signal pathways exerted stronger growth effects in our human xenotransplanted lung cancer model than inhibition of either pathway alone. The anti-tumor effects were accompanied by synergetic inhibition of tumor cell apoptosis, activation of p-EGFR and expression of COX-2.

Anti-Proliferative Effects of Selenium in HT-29 Colon Cancer Cells via Inhibition of Akt (HT-29 대장암세포에서 Akt 활성 저해에 따른 셀레늄의 세포 증식억제 효과)

  • Park, Song-Yi;Kim, In-Seop;Lee, Se-Hee;Lee, Sol-Hwa;Jung, Da-Woon;Park, Ock-Jin;Kim, Young-Min
    • Journal of Life Science
    • /
    • v.22 no.1
    • /
    • pp.55-61
    • /
    • 2012
  • Akt is known to play an important role in cell proliferation and differentiation, and is also over-expressed in several types of cancer cells. In this study, we explored the anti-proliferative effects of selenium in HT-29 colon cancer cells, mediated through effects on Akt and COX-2. Selenium treatments at different concentrations and for different durations inhibited proliferation of HT-29 colon cancer cells and increased apoptotic cell death. Selenium treatment decreased Akt phosphorylation and COX-2 expression. Treatment with LY294002 (an Akt inhibitor) decreased proliferation of HT-29 cells, while a combined treatment with LY294002 and selenium resulted in even further decreases in cell proliferation. Inactivation of Akt by Akt siRNA treatment abolished these inhibitory effects on cell growth. COX-2 expression decreased in Akt transfected cells compared to non-transfected cells. These results suggest that selenium induced both anti-proliferative and apoptotic effects by inhibiting Akt phosphorylation and COX-2 expression. Selenium treatment also appeared to induce synergistic anti-proliferative effects by inhibition of Akt in HT-29 colon cancer cells.