• Title/Summary/Keyword: COP1

Search Result 518, Processing Time 0.024 seconds

Effects of Individual Components on the System Performance in a Desiccant Cooling System (제습냉방시스템에서 요소성능이 시스템성능에 미치는 영향)

  • Chang, Young-Soo;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.10
    • /
    • pp.687-694
    • /
    • 2007
  • Cycle simulation is peformed for two types of the desiccant cooling system incorporating a regenerative evaporative cooler. The cooling capacity and COP are evaluated at various effectiveness values of the regenerative evaporative cooler, the desiccant rotor and the sensible heat exchanger. As either of the effectiveness of the regenerative evaporative cooler or the humidity effectiveness of the desiccant rotor increases, both the cooling capacity and COP increase, but the enthalpy leak ratio gives the opposite effect on the system performance. It is found that COP of cycle A mainly depends on the humidity effectiveness of the desiccant rotor, while for cycle B enthalpy leak ratio of desiccant rotor has the major impact on COP. The effect of the sensible heat exchanger on the cooling capacity is small about 1/10 compared with those of other components.

Simulation for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수 열원 및 폐열 이용 고성능 열펌프 시스템 모사)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.1
    • /
    • pp.59-66
    • /
    • 2003
  • The purpose of this study is to analyze the characteristics (COP) of the heat pump system for various operating conditions with the use of seawater heat source and exhaust energy. To accomplish the goal, first of all, the computer simulation for heat pump system is carried out. The heat pump system model is made of a waste heat recovery system and a vapor compression refrigeration system, and the working fluid is R-22. The model calculated the change of COP with the variation of temperature and flow rate. The COP and the plate heat exchanger (PHE) area of the heat pump system are considered moderately high in the condensation temperature of $25^{\circ}^C$ and the evaporation temperature of $2^{\circ}^C$ in indoor culture system. The simulation results will be used effectively for the design and the performance prediction of heat pump system using unused energy in a land base aquaculture system.

The Relationship between Dynamic Balance Measures and Center of Pressure Displacement Time in Older Adults during an Obstacle Crossing

  • Park, Seol;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the relationship between the center of pressure (COP) displacement time during the stance phase and dynamic balance ability when older adults cross a 10 cm obstacle. Methods: Fifteen older adults were enrolled in this study (all ${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when subjects cross a 10 cm obstacle, and the Dynamic gait index. Berg's balance scale and the Four square step test were used to measure dynamic balance ability. Results: The Dynamic gait index, Berg's balance scale and the Four square step test were correlated with each other. Dynamic balance ability was correlated with COP displacement time during the stance phase at an obstacle crossing in older adults. Conclusion: People with higher dynamic balance ability show a smaller COP displacement time during the stance phase at an obstacle crossing. Therefore, dynamic balance ability can be predicted by measuring the center of pressure displacement time.

A Numerical Simulation of Air-Cooled Ammonia/Water GAX Absorption Cooling Cycle (공냉형 암모니아/물 GAX 흡수식 냉동 사이클의 수치 해석)

  • Jeong, S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.488-500
    • /
    • 1995
  • An air-cooled ammonia/water GAX(Generator-Absorber heat eXchange) absorption cooling cycle is proposed and its performance is numerically evaluated. It is shown that the performance of the system is greatly dependent on the quality of the refrigerant leaving the evaporator. For any refrigerant concentration in the investigated range(99.1~99.9% ammonia), the cycle COP(coefficient of performance) reaches the highest value, when some amount(about 7%) of refrigerant evaporates in the refrigerant heat exchanger. Among temperature differences in various heat exchangers, the temperature difference between GAX-absorber and the GAX-generator shows the greatest effect on the system performance, whereas pressure losses cause no significant decrease in COP. The system COP increases almost linearly with increasing evaporator temperature, decreasing absorber temperature or decreasing condenser temperature. If both absorber and condenser temperature increase simultaneously, the decrease in the COP becomes larger.

  • PDF

Performance Evaluation of Air Source Multi Heat Pump Floor Heating System in Apartment (공동주택 공기열 멀티 히트펌프의 바닥난방 성능 평가)

  • LEE, C.H.;Nah, H.S.;JUNG, H.;Kim, K.S.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.93-98
    • /
    • 2011
  • To analyze and evaluate the performance of developing air to water multi heat pump, the heat pump was installed and tested at low energy house in Daejeon, korea. Heating capacity of heat pump is 16.5KW and cooling capacity is 14.0KW. Space heating/cooling, floor heating and hot water is available. The results performance evaluation of heat pump in lab test showed that the coefficient of performance (cop) was 3.75, and heating capacity was 16.0KW in ambient temperature $7^{\circ}C$. Also at ambient temperature $-15^{\circ}C$, the COP was 1.69. At a low energy house, floor heating is controled by a floor heating water temperature and a room temperature. The COP of heat pump is decreased with frequent on/off operation for controlling of floor heating water temperature.

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

The Effect of Dual-Task on Standing Postural Control in Persons With Chronic Stroke (만성 뇌졸중 환자의 기립 자세조절에 이중 과제가 미치는 영향)

  • Jeon, Hye-Won;Chung, Yi-Jung
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.20-30
    • /
    • 2010
  • This study examined whether any changes by mental task types on postural control in chronic stroke persons. Sixteen chronic stroke persons (mean age=53.75 yr) and sixteen age-and gender-matched healthy controls (mean age=54.44 yr) took part in this study. Participants randomly performed three different tasks on the stable and unstable surfaces. The no mental task was to stand while holding a 100 g weight in each hand, the arithmetic task (mental task) was to perform a silent 1-backwards counting while standing and holding a 100 g weight in each hand, and the simple task (mental task) was to stand and hold with both hands a tray (200 g) on which a glass filled with water has been placed. Sway path and sway velocity of the center of pressure (COP) were measured to assess standing postural control by task performance using the force platform. According to the results, in stroke group, total sway path and total sway velocity of COP was significantly decreased during arithmetic and simple task compared to no mental task on the stable surface (p<.05), and sway path (anteroposterior AP, mediolateral ML) of COP, total and sway velocity (AP, ML, total) of COP was significantly decreased during arithmetic and simple task compared to no mental task on the unstable surface (p<.05). Especially, sway path (AP, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased under the simple task when compared to the arithmetic task on the unstable surface (p<.05). In healthy control group, sway path (AP, ML, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased during arithmetic and simple task compared to no mental task on the stable and unstable surface (p<.05), and sway path (AP, total) of COP and sway velocity (AP, ML, total) of COP was significantly decreased under the simple task when compared to the arithmetic task on the unstable surface (p<.05). In conclusion, the findings of this study showed that arithmetic and simple task improved standing postural control for chronic stroke patients and the type of arithmetic and simple tasks were critical factor that reduced standing postural sway in dual-task conditions. Future research should determine whether dual-task conditions, including simple task, would be effective as a training program for standing postural control of stroke patients.

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

Performance Comparison of Two-stage Compression Refrigeration System Using R404A (R410A용 2단 압축 1단 팽창 냉동시스템의 성능 분석)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Jo, Hwan
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.57-62
    • /
    • 2014
  • This paper present the performance characteristics of R404A two-stage compression refrigeration system. The operating parameters considered in this study include evaporating and condensing temperature, subcooling and superheating degree, compressor efficiency. The main results were summarized as follows: The COP of two-stage compression refrigeration system using R404A has an effect on the variation of evaporation temperature, condensation temperature, subcooling degree and compressor efficiency, but not an effect on the superheating degree. R404A two-stage compression refrigeration system is unstable because COP of this system is significantly changed when evaporating temperature and compressor efficiency decreased. In particular, when compressor efficiency decreased, COP is significantly decreased. This is inefficient for long-term use.

A Study on the Cooling Heating Performance Experiment by Refrigerant Auto Control of Geothermal Heat Pump (지열히트펌프 냉매자동조절에 따른 냉·난방 성능실험에 관한 연구)

  • Koo, Nam-Yeol;Seo, Seung-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This study presents analysis of the experimental data meeting conditions of several applications in real time. The results of this experimental study are as follows: Respectively in cooling and heating performance, a refrigerant charge tank can take automatic control of variation of the refrigerant quantity by controling pressure and temperature of system and outlet water temperature. The COP shows 3.5 in cooling operation and 3.2 in heating operation. The refrigerant quantity increases 0.69 kJ/h. When the outdoor temperature decreases $1^{\circ}C$, Therefore if the temperature become lower from $25^{\circ}C$ to $-16^{\circ}C$, the refrigerant quantity increases about 9.5%. Compared to the normal state experiment results, the COP in automatic control of the refrigerant quantity rises roughly 10%.