• 제목/요약/키워드: COP(center of pressure)

검색결과 200건 처리시간 0.034초

Wii Balance Board를 이용한 Sit-to-Stand와 보행기능 측정의 검사-재검사 신뢰도 (Test-retest Reliability of Sit-to-Stand and Gait Assessment Using the Wii Balance Board)

  • 양승례;오유리;전예림;박대성
    • 한국전문물리치료학회지
    • /
    • 제23권3호
    • /
    • pp.40-47
    • /
    • 2016
  • Background: Assessments of Sit-to-Stand (STS) and gait functions are essential procedures in evaluating level of independence for the patients after stroke. In a previous study, we developed the software to analyze center of pressure (COP) in standing position on Wii Balance Board (WBB). Objects: This purpose of this study is to measure test-retest reliability of ground reaction forces, COP and time using WBB on STS and gait in healthy adults. Methods: Fifteen healthy participants performed three trials of STS and gait on WBB. The time (s), vertical peak (%) and COP path-length (cm) were measured on both tasks. Additionally, counter (%), different peak (%), symmetry ratio, COP x-range and COP y-range were analyzed on STS, 1st peak (%), 2nd peak (%) of weight were analyzed on gait. Intra-class correlation coefficient (ICC), standard error measurement (SEM) and smallest real difference (SRD) were analyzed for test-retest reliability. Results: ICC of all variables except COP path-length appeared to .676~.946 on STS, and to .723~.901 on gait. SEM and SRD of all variables excepting COP path-length appeared .227~8.886, .033~24.575 on STS. SEM and SRD excepting COP path-length appeared about .019~3.933, .054~11.879 on gait. Conclusion: WBB is not only cheaper than force plate, but also easier to use clinically. WBB is considered as an adequate equipment for measuring changes of weight bearing during balance, STS and gait test which are normally used for functional assessment in patients with neurological problems and elderly. The further study is needed concurrent validity on neurological patients, elderly patients using force plate and WBB.

Effects of Customized 3D-printed Insoles on the Kinematics of Flat-footed Walking and Running

  • Joo, Ji-Yong;Kim, Young-Kwan
    • 한국운동역학회지
    • /
    • 제28권4호
    • /
    • pp.237-244
    • /
    • 2018
  • Objective: Flat-footed people struggle with excessive ankle joint motion during walking and running. This study aimed to investigate the effects of customized three-dimensional 3D-printed insoles on the kinematics of flat-footed people during daily activities (walking and running). Method: Fifteen subjects (height, $169.20{\pm}2.61cm$; age, $22.87{\pm}8.48years$; navicular bone height, $13.2{\pm}1.00mm$) diagnosed with flat feet in a physical examination participated in this study. Results: The customized 3D-printed insoles did not significantly affect 3D ankle joint angles under walking and running conditions. However, they shifted the trajectory of the center of pressure (COP) laterally during fast walking, which enhanced the load distribution on the foot during the stance phase. Conclusion: The customized 3D-printed insoles somewhat positively affected the pressure distribution of flat-footed people by changing the COP trajectory. Further research including comparisons with customized commercial insoles is needed.

평지 보행 시 발 각도 형태에 따른 발바닥 압력 비교 연구 (A Comparative Study of the Plantar Foot Pressure according to the Form of Foot Angle during Level Walking)

  • 이전형;김기철;국중석
    • PNF and Movement
    • /
    • 제12권2호
    • /
    • pp.89-96
    • /
    • 2014
  • Purpose: The purpose of this study was to examine the influence of foot angles on plantar pressure and the center of pressure (COP) trajectory length during level walking. Methods: The study subjects were 30 female university students without orthopedic diseases in the foot. The foot angle was divided into three forms (out-toeing, normal, in-toeing). The subjects practiced each type of gait, and then performed each of level walking, three times, and their averages were calculated. A plantar pressure measurement instrument was used, and the maximum force was obtained by dividing the foot into nine regions covering the anterior medial-lateral, middle medial-lateral, and posterior medial-lateral. The COP trajectory length was statistically processed by obtaining medial-lateral, anterior-posterior, and entire travel distance. Results: During normal walking, the maximum force was significantly higher in the anterior lateral than in the other areas, and the COP trajectory length was significantly shorter in the front-back and entire travel distances (p<0.05). During stair climbing. Conclusion: Walking at abnormal foot angles does not cause appreciable problems in the short term as pressure is concentrated on a specific plantar part. However, it becomes the cause of deformed foot structures and can result in musculoskeletal disabilities in the long term. Therefore, a kinesiatrics-based intervention is required to maintain normal foot angles.

가방 끈 길이 차이가 상지 근활성도, 압력중심 및 체중분포에 미치는 영향 (Effect of Back Strap Length Differences on Upper Extremity Muscle Activity, Center of Pressure, and Weight Distribution)

  • 이현주;김민수;김아연;강현구;태기식
    • 대한의용생체공학회:의공학회지
    • /
    • 제42권5호
    • /
    • pp.225-231
    • /
    • 2021
  • The purpose of this study was to investigate the effect on the activity of the upper trapezius and erector spinae according to the length difference of the backpack using electromyogram (EMG). We also conducted a study comparing the center of pressure (COP) and weight distribution before and after using Wii® balance board. Thirty individuals were randomly assigned to the experimental group (n=14) wearing a backpack with a short right strap length and a control group (n=16) wearing a backpack with the same strap length. Data were collected by dividing into groups, carring a 15% weight backpack and walking for 20 minutes on a treadmill. As a result of analyzing the EMG data, there was no significant change in the upper extremity muscle activity of the control group, but it was significantly decreased in the right upper trapezius activity of the experimental group (p<0.05). In addition, there was a significant change of COP in the experimental group (p<0.05), but there was no significant difference of the weight distribution in both groups. Recognizing mechanical changes in the body that may occur due to the asymmetry of the strap length is thought to be helpful for systematic ergonomic intervention according to changes in the external environment in the future.

불안정한 자세에서 하지에 인가한 진동자극이 자세 안정성 개선에 미치는 영향 (The Effect of Human Lower Limb Vibration on Postural Stability during Unstable Posture)

  • 은혜인;유미;김동욱;권대규;김남균
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권5호
    • /
    • pp.628-635
    • /
    • 2007
  • We studied the effect of vibratory stimulations of different leg muscles, tibialis anterior(TA) and triceps surae(TS), and plantar zones in ten healthy subjects during 1) quiet standing, 2) forward lean of body, 3) backward lean of body, 4) right lean of body, and 5) left lean of body. The experiments were performed on the force platform. The effect of vibration were measured by monitoring the area of COP(Center of pressure) sway. The subjects wore a vibratory stimulation system on foot and ankles and were given the instruction not to resist against the applied perturbations. The results show that all vibratory stimulations to lower limb muscles and plantar zones reduced the COP sway area. This reduction of the COP sway area occurred also in partial vibratory stimulations during quiet standing. In forward lean of body, vibratory stimulations to TA reduced the COP sway area. During backward lean of body, vibratory stimulations to TS reduced the COP sway area. When the subject was tilted right, vibratory stimulations to left plantar zone reduced the COP sway area. During left lean of body, vibratory stimulations to right plantar zone reduced the COP sway area. Thus, the influence of vibratory stimulations to leg muscle and plantar zones differed significantly depending on the lean of body. We suggest that the vibration stimuli from leg muscles and plantar zones could be selectively used to help maintaining postural balance stable.

Effects of Fatigue Induction on Ground Reaction Force Components, Postural Stability, and Vertical Jump Performance in Taekwondo Athletes

  • Hyun, Seung-Hyun;Kim, Young-Pyo;Ryew, Che-Cheong
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.143-151
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of fatigue induction on ground reaction force (GRF) components, postural stability, and vertical jump performance in Taekwondo athletes. Method: Ten Taekwondo athletes (5 men, 5 women; mean age, $22.30{\pm}2.62years$; mean height, $174.21{\pm}9.20cm$; mean body weight, $67.28{\pm}12.56kg$) participated in this study. Fatigue was induced by a short period of strenuous exercise performed on a motorized treadmill. The analyzed variables included vertical jump performance, static stability (mediolateral [ML], center of pressure [COP], anteroposterior [AP] COP, ${\Delta}COPx$, ${\Delta}COPy$, and COP area), postural stability index values (ML stability index [MLSI], AP stability index [APSI], vertical stability index [VSI], dynamic postural stability index [DPSI]), and GRF components (ML force, AP force, peak vertical force [PVF], and loading rate). To analyze the variables measured in this study, PASW version 22.0 was used to calculate the mean and standard deviation, while a paired t-test was used to evaluate the pre- versus post-fatigue results. Pearson's correlation coefficients among variables were also analyzed. The statistical significance level was set at ${\alpha}$ = .05. Results: Vertical jump performance decreased significantly after the induction of fatigue, while AP COP, ${\Delta}COPx$, COP area, APSI, VSI, and DPSI increased significantly. PVF and loading rate increased significantly after the induction of fatigue, while the postural stability variables (AP COP, ${\Delta}COPy$, COP area, APSI, VSI, DPSI) were similarly correlated with GRF components (PVF, loading rate) after fatigue was achieved (r = .600, $R^2$ = 37%). Conclusion: These results suggest that the induction of fatigue can decrease postural stability and exercise performance of Taekwondo athletes during training and competition sessions.

노인여성의 정적직립자세에서 지면반력 주파수 분석 (Analysis of Frequency domain Characteristics of Ground Reaction Forces during Quiet Standing of Elderly Women)

  • 이경순
    • 대한물리치료과학회지
    • /
    • 제19권1호
    • /
    • pp.63-69
    • /
    • 2012
  • Background : The purpose of this study was to investigate the frequency domain characteristics of ground reaction forces during quiet standing on inclined surfaces twenty healthy individuals(10 elderly women $68.78{\pm}3.29$ years and 10 young women $20.90{\pm}0.74$ years) participated. Methods : Subjects stood in quiet stance over a force platform positioned in one of three different fixed positions: flat, down and up. Healthy participants completed with eyes open for 120 s trials. Evaluation of postural control were generally based on the interpretation of center of pressure(COP) time series. The COP have been determined using an experimental setup with 3D kinematic and the ground reaction force system. All the data were expressed means and standard deviation by using SAS package program. Results : SEF 50% were not significant in AP and ML direction according to surface slope of both groups. SEF 95% were showed highest frequency in AP direction on down slope of both groups. MEF were not significant all direction according to surface slopes of elderly women. There was no difference between young and elderly women. Conclusion : Elderly women used to ankle strategy during a quiet stance according to COP perturbation of AP direction showed more expanded than ML direction. SEF 95% were showed highest frequency on down slope in elderly women who showed more used ankle strategy for postural control on down slope.

  • PDF