• 제목/요약/키워드: COP(Coefficient of Performance)

검색결과 225건 처리시간 0.021초

저온수를 이용하는 일중효용/이단승온 리튬브로마이드-물 흡수식 시스템의 동적 해석 (Dynamic Analysis of Single-Effect/Double-Lift Libr-Water Absorption System using Low-Temperature Hot Water)

  • 김병주
    • 설비공학논문집
    • /
    • 제21권12호
    • /
    • pp.695-702
    • /
    • 2009
  • Dynamic behavior of Libr-water absorption system using low-temperature hot water was investigated numerically. Thermal-hydraulic model of single-effect/double-lift 100 RT chiller was developed by applying transient conservation equations of total mass, Libr mass, energy and momentum to each component. Transient variations of system properties and transport variables were analysed during start-up operation. Numerical analysis were performed to quantify the effects of bulk concentration and part-load operation on the system performance in terms of cooling capacity, coefficient of performance, and time constant of system. For an absorption chiller considered in the present study, optimum bulk concentration was found to exist, which resulted in the minimum time constant with stable cooling capacity. COP and time constant increased as the load decreased down to 40%, below which the time constant increased abruptly and COP decreased as the load decreased further.

심야전기보일러 대체용 공기열 히트펌프 성능평가 (A Study of Air-source Heat Pump Performance Analysis for Replacing Night Time Electric Heating Boiler)

  • 조종영;정훈;이철희
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.81-85
    • /
    • 2011
  • The night time electric cost is cheaper due to electric supply and demand policy in Korea from 1985. Currently about 900,000 customers are using night time electric heating boilers and this causes shift of peak demand time to night in winter and increase of deficit spending. To solve this problem, replacing night time electric heating boiler by air-source heat pump using night time electricity has been proposed. An air-source heat pump can provide efficient heating equipment especially in a warm climate. For estimating the night time electric heat pump COP(Coefficient of Performance), Korean Standard KS C 9306:2010 and European Standard EN-14511:2004 is available. SCOP(Seasonal COP) using European weather bin data is also calculated. SCOP is not available yet but European Committee for Standardization will establish a standard in the near future. The evaluation result show that the replacing night time electric heating boiler by heat pump can be possible.

지반.지하수 조건을 고려한 최적의 지하수 이용 공조 시스템 선정에 관한 연구 (Study on Optimization of Design and Operation for Groundwater Heat Pump System Considering Ground and Groundwater Condition)

  • 남유진;오오카 료죠;황석호
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.731-736
    • /
    • 2006
  • Groundwater heat pump (GWHP) system has been expected to achieve the higher coefficient of performance (COP) and more energy-saving than the conventional air-source heat pump (ASHP) system. Its performance significantly depends on the characteristics of groundwater and the underground thermal properties. Furthermore, there is a large difference of COP in utilizing groundwater between as a heat resource and as a thermal storage medium. For properties of groundwater there is suitable utilizing system. However, many of GWHP systems have not been considered sufficiently such properties. This research describes optimization of GWHP system according to the properties of groundwater based on 3D numerical heat and water transport simulation.

  • PDF

지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능- (Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation)

  • 김영복;백이
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF

주거용 건물에서의 히트펌프 시스템 연성능 평가에 관한 연구 (Analysis Study of Seasonal Performance Factor for Residential Building Integrated Heat Pump System)

  • 강은철;민경천;이광섭;이의준
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제4권1호
    • /
    • pp.3-10
    • /
    • 2016
  • 국내 히트펌프 유닛에 대한 성능 기준은 KS C 9306에서 제시하는 표준조건에서의 COP로 표현된다. 그러나 히트펌프 시스템이 실제 건물에 적용될 경우에는 표준조건에서 운전되는 것이 아니기 때문에 현장의 기후 조건, 건물의 특성에 따라 히트펌프 시스템의 성능은 다르게 나타난다. 본 논문에서는 주거건물을 대상으로 국내 주요 도시의 기후 조건에 따른 공기 대 공기 히트펌프 시스템의 연성능을 평가하여 기존의 BIN 데이터를 활용한 연성능 평가 결과와 정량적으로 비교 분석하였다. 연성능 평가도구로는 IPMVP 4.4.2에서 제시한 국제호환형 프로그램인 TRNSYS를 사용하였다. 공기 대 공기 히트펌프 유닛의 멀티 성능 데이터를 적용한 경우, 연성능 평가 기준인 APF는 BIN 데이터를 적용했을 때보다 전체적으로 높았으며, 부산이 2.36으로 가장 높았고, 대전이 2.29로 가장 낮았다.

고층 건물의 실외기실에 위치한 응축기 성능분석 (Analysis of the Condenser Performance Installed in the Air-Conditioning Plant Room of a High-Rise Building)

  • 최석호;이관수;김병순
    • 설비공학논문집
    • /
    • 제15권7호
    • /
    • pp.586-594
    • /
    • 2003
  • The performance of the condenser installed in the air-conditioning plant room of a high-rise building was studied numerically. The effect of the draft direction on the performance of an air-conditioner was analyzed. The on-coil temperature of the condenser was investigated by varying the arrangement and location o( the condenser in the air-conditioning plant room. The performance of an air-conditioner was also evaluated by using COP (coefficient of performance) and CGPI (condenser group performance indicator). The condenser in an air-conditioning plant room should be arranged in such a manner that the fan of the condenser is facing the outside of the building to exhaust the hot air directly, The model by which the condenser is located at the lower-left end of an air-conditioning plant room can prevent the hot air from reentering, and allow indrafting of fresh air. When the direction of draft is to the frontal face of the building, the performance of the condenser above 30th floor is degraded.

R170/R290 혼합냉매 적용 히트펌프 성능 평가 (Performance of Heat Pumps Charged with R170/R290 Mixture)

  • 박기정;이철희;정동수
    • 설비공학논문집
    • /
    • 제20권9호
    • /
    • pp.590-598
    • /
    • 2008
  • In this study, performance of R170/R290 mixtures is measured on a heat pump bench tester in an attempt to substitute R22. The bench tester is equipped with a commercial hermetic rotary compressor providing a nominal capacity of 3.5kW. All tests are conducted under the summer cooling and winter heating conditions of $7/45^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser respectively. During the tests, the composition of R170 is varied from 0 to 10% with an interval of 2%. Test results show that the coefficient of performance (COP) and capacity of R290 are up to 15.4% higher and 7.5% lower than those of R22 for both conditions respectively. For R170/R290 mixture, the COP decreases and the capacity increases with an increase in the amount of R170. The mixture of 4%R170/96%R290 shows the similar capacity and COP as those of R22. For the mixture, the compressor discharge temperature is $16{\sim}30^{\circ}C$ lower than that of R22. There is no problem with mineral oil since the mixture is mainly composed of hydrocarbons. The amount of charge is reduced up to 58% as compared to R22. Overall, R170/R290 mixture is a good long term 'drop-in' candidate to replace R22 in residential air-conditioners and heat pumps.

Al2O3 나노 입자를 적용한 증기 압축 냉동 사이클의 성능 (An Experimental Study on Performance of Vapor Compression Refrigeration Cycle with Al2O3 nano-particle)

  • 김정배;이규선;이근안
    • 에너지공학
    • /
    • 제24권4호
    • /
    • pp.124-129
    • /
    • 2015
  • $Al_2O_3$ 나노입자의 농도별로 전동식 압축기의 회전속도(rpm)의 변화에 따른 자동차용 증기압축 냉동사이클의 COP를 실험적으로 평가하고 나노입자를 적용하지 않은 기준 사이클의 COP와 비교하였다. 이를 위해 실제 하이브리드 자동차에서 쓰는 사이클 부품들을 이용하고 항온항습 챔버를 이용하지 않는 방식으로 장치를 설계 및 제작하였다. 별도의 전동식 인버터 압축기의 제어장치를 활용하여 1000rpm부터 500rpm 간격으로 4000rpm까지와 $Al_2O_3$ 나노입자를 질량비 기준으로 농도 0.05%, 0.1%, 0.2%와 0.5%의 범위에 대하여 실험을 수행하였다. 이를 통해 기준 사이클과 비교하면 기준 사이클의 일반적인 운전조건인 약 3000rpm에서 $Al_2O_3$ 나노유체를 적용하는 사이클의 COP는 질량 농도비 0.05%에서는 15.4% 정도, 농도비 0.1%, 0.2% 및 0.5%에서는 각각 9.4%, 13% 및 9.6%가 증가함을 알 수 있었다.

고층 아파트에서 응축기 적층문제 분석 (Analysis of the Condenser Stack Effect in a High-Rise Apartment Building)

  • 최석호;이관수;김인규;이동혁
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.796-803
    • /
    • 2004
  • The stack effect of a new type condenser installed in a high-rise apartment building was studied numerically A sirocco fan is introduced to the new type condenser instead of an axial flow In. The new type condenser intakes the cold air through the lower inlet and exhausts the hot air through the upper outlet. The effects of the building height and frontal wind on the performance of an air-conditioner were analyzed. The performance of an air-conditioner was evaluated by using COP (coefficient of performance) and CGPI (condenser group performance indicator). the hot air was exhausted by the new type condenser at an angle of 50$^{\circ}$ from the outer wall of the building. If there was no draft, the new type condenser installed in the high-rise apartment building had a good performance and its performance on each floor is not influenced by the stack effect. It is shown that the efficiency of the air-conditioner installed in several floors below the top floor decreased when the frontal wind velocity was greater than 8 m/s.

곡물냉각기의 성능해석을 위한 시뮬레이션 (Simulation for Performance Analysis of a Grain Cooler)

  • 박진호;정종훈
    • Journal of Biosystems Engineering
    • /
    • 제26권5호
    • /
    • pp.449-460
    • /
    • 2001
  • This study was carried out to develop a simulation model with EES(Engineering equation solver) for analyzing the performance of a grain cooler. In order to validate the developed simulation model, several main factors which have affected on the performance of the gain cooler were investigated through experiments. A simulation model was developed in the standard vapor compression cycle, and then this model was modified considering irreversibe factors so that the developed alternate model could predict the actual cycle of a grain cooler. The compressor efficiency in vapor compression cycle considering irreversibility much affected on the coefficient of performance(COP). The COP in the standard vapor compression cycle model was greatly as high as about 6.50, but the COP in an alternative model considering irreversibility was as low as about 3.27. As a result of comparison between the actual cycle and the vapor compression cycle considering irreversibility, the difference of pressure at compressor outlet(inlet) was a little by about 48kPa (8.8kPa), the temperatures of refrigerant at main parts of the grain cooler were similar. and the temperature of chilled air was about 8$\^{C}$ in both. The model considering irreversibility could predict performance of the grain cooler. The theoretical period required to chill grain of 1,383kg from the initial temperature 24$\^{C}$ to below 11$\^{C}$ was about 55 hours 30 minutes, and the actual period required in a grain bin was about 58 hours. The difference between the predicted and an actual period was about 2 hours 30 minutes. The cooling performance predicted by the developed model could well estimate the cooling period required to chill the grain.

  • PDF