• Title/Summary/Keyword: COP(Coefficient of Performance)

Search Result 225, Processing Time 0.026 seconds

A Study on the Performance of Thermoelectric Cooling System for Design Parameters of the Cooling Jacket (냉각재킷의 설계인자에 따른 열전냉각장치의 성능에 관한 연구)

  • Park, Sang-Hee;Lee, Jeong-Eun;Kim, Kyoung-Jin;Kim, Dong-Joo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.3
    • /
    • pp.149-156
    • /
    • 2009
  • A small-scale thermoelectric cooling system was built in an effort to enhance the performance of the refrigeration system by utilizing the water-cooled jacket which was attached to the hot side of the thermoelectric module. Considered design parameters for the water-cooled jacket were the geometry of the flow passage inside the jacket and the flow rate of cooling water. The higher flow rate of cooling water in the jacket resulted in a better performance of the refrigeration system. The increase in the number of channels for water flow passage inside the cooling jacket also showed significant improvement on the performance of the thermoelectric cooling system such as the cooling capacity and the COP of the refrigeration system.

Comparisons of Performance in CO2 Systems with Operating Conditions (운전조건 변화에 따른 이산화탄소 냉방시스템들의 성능 비교)

  • Bae, Kyung-Jin;Shin, Eun-Sung;Cho, Hong-Hyun
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1484-1490
    • /
    • 2009
  • Since the cooling performance of a $CO_2$ cooling cycle is varied significantly with a variation of refrigerant charge amount and outdoor temperature, the reliability of $CO_2$ system is down. In this study, the performance characteristics of three kinds of $CO_2$ systems were measured and analyzed by varying refrigerant charge amount and outdoor temperature so as to study the characteristics of variation with cycle option. The applied system options are the single-stage compression(1C-1E) system, two-stage compression with 1-EEV(2C-1E) system, and two-stage compression with 2-EEV(2C-2E) system. The performances of two-stage compression with 2-EEV system were less sensitive than those of other systems and the system operated safely and steadily for wide charge amount. The performance of the two-stage compression with 1-EEV(2C-1E) system was the most sensitive to the charge amount, and that of the single-stage compression(1C-1E) system varied a lot with outdoor temperature.

  • PDF

A Study on Performance Evaluation of a Vertically Closed Deep Geothermal Circulation Simulator (수직 밀폐형 심부지열 순환 시뮬레이터의 성능 평가에 관한 연구)

  • Bae, Jung-Hyeong;Lee, Dong-Woon;Yoon, Chung-Man;Ryoo, Yeon-Su;Jeong, Sang-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.8-17
    • /
    • 2016
  • While greenhouses have been utilized as a sustainable alternative to traditional soil farming, they are often powered by diesel boilers that necessitate vast amounts of non-renewable energy and emit toxic fumes. Thus, geothermal heat pumps have been proposed as a more energy-efficient substitution for diesel boilers. Currently, most horticultural facilities in the United States use shallow geothermal systems, and are often equipped with horizontal underground heat exchangers as well as heat pump equipment. These shallow geothermal systems require a large drilling site and heat pump to function, which results in high maintenance costs. The heat pump itself consumes a large amount of power, which degrades system performance. Conversely, high temperatures can be attained within a single borehole in deep geothermal vertical closing systems without using a heat pump. This setup can dramatically reduce the power consumption and improve system performance. In this study, we have modeled a circulation simulator after the circulation systems in deep geothermal facilities to analyze a 2000-meter borehole in Naju-Sanpo-myeon. The simulator is operated by manipulating various putative parameters affecting system performance to analyze the system's coefficient of performance.

An experimental study on the cooling performance of carbon dioxide heat pump system for fuel cell vehicles (연료전지 자동차용 이산화탄소 열펌프 시스템에서의 냉방 성능에 관한 실험적 연구)

  • Kim Sungchul;Park Minsoo;Kim Min Soo;Hwang Inchul;Noh Youngwoo;Park Moonsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.378-383
    • /
    • 2005
  • This experimental study presents the results of the cooling performance test of a $CO_2$ heat pump system for fuel cell vehicles. The experimental facility provides the cool ing and heating environment for cabin and heat releasing component. The test loop is designed to target the cooling capacity of 5kW and its coefficient of performance (COP) of 2.2. The cooling performance of the heat pump system is strongly dependent on the refrigerant charge and the degree of superheat. We carried out basic experiments to obtain optimum refrigerant charge and the degree of superheat level at the internal heat exchanger outlet. The heat pump system for fuel cell vehicles is different from that of engine-driven vehicles, where the former has an electricity-driven compressor and the latter has the belt-driven (engine-driven) compressor. In the fuel cell vehicle, the compressor speed is an independent operating parameter and it is controlled to meet the cooling/heating loads. Experiments were carried out at cooling mode with respect to the compressor speed and the incoming outdoor air speed. The results obtained in this study can provide the fundamental cool ing performance data using the $CO_2$ heat pump system for fuel cell vehicles.

  • PDF

Studies on the Steady State and Dynamic Characteristics of a Carbon Dioxide Air-Conditioning System for Vehicles (자동차용 이산화탄소 냉방 시스템의 정상상태 및 동적 특성에 관한 연구)

  • Park, Min-Su;Kim, Sung-Chul;Kim, Dal-Won;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.6 s.261
    • /
    • pp.531-538
    • /
    • 2007
  • In this study, an air conditioning system using carbon dioxide as a refrigerant was developed for automotive cabin cooling. Experiments have been carried out to examine the steady state and dynamic characteristics of this system. The system consists of a compressor, a gas cooler, an evaporator, an expansion device, an internal heat exchanger and an accumulator. The compressor is a variable displacement type, driven by the electric motor, and the gas cooler and the evaporator are aluminum extruded heat exchangers of micro channel type. The $CO_2-refrigerant$ charge, the compressor speed, the air inlet temperature of the gas cooler, the air inlet temperature and the air flow rate of the evaporator and the cooling load are varied and the performance of the system is experimentally investigated. As the compressor speed increased, cooling capacity increased, but the coefficient of performance was deteriorated. As the cabin air temperature or the air flow rate to the cabin was set high, both the cooling capacity and the COP increased. In the cool down experiment with 1.0 or 2.0 kW of heat load, the dynamic characteristics of the air-conditioning system were investigated. For a given capacity of compressor, cool down speed was monitored, and the temperature change was acceptable fur low heat load condition.

Performance Analysis of New Working Solution for Absorption Refrigeration Machine using Treated Sewage (하수처리수이용 신용액 흡수식 냉동기의 성능해석)

  • 권오경;유선일;윤정인
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.231-240
    • /
    • 1998
  • The global environmental problems such as CFC, energy losses in heat recovery system as well as summer peak time power demands, the development of high efficiency absorption refrigeration systems is one of the most promising method in this problems. The absorption refrigeration system to utilize treated sewage is available for environmental protection and energy conservation. Simulation analysis on the double-effect absorption refrigeration cucles with parallel or series flow type has been performed. LiBr+LiI+LiCl+LiNO$_3$ solution was selected as the new working fluid. The main purpose of this study is evaluating the possibilities of effective utilization of treated sewage as a cooling water for the absorber and condenser. The other purpose of the present study is to determine the optimum designs and operating conditions based on the operating constraints and the coefficient of performance in the parallel or series flow type. In this study, we found out the characteristic of new working solution through the cycle simulation and compared LiBr solution to evaluate. The absorption refrigeration machine using the new working fluid was obtained better results COP rise and compactness of system by comparison with LiBr solution.

  • PDF

Thermodynamic Performance Analysis of Heat Pump Using Thermoelectric Semiconductor (열전반도체를 이용한 열펌프의 열역학적 성능 해석)

  • 박영무
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.95-103
    • /
    • 1993
  • A conceptual thermoelectric heat pump(cooling mode) of small capacity is designed. Its performance is investigated through parametric analysis. COP and cooling capacity decease as the ambient temperature increases with ${\mu}$, J, T$\sub$wi/, fixed. To design a system of fixed capacity comes to calculate ${\mu}$ and J when T$\sub$wi/, and T$\sub$a/ are given. As v is fixed by semi-conductor manufacturers, optimum combination of n and I should be searched for ν. Optimum current could be calculated using ${\mu}$-J curve and optimum value of ${\mu}$. COR$\sub$R/ increases as water flow rate increases and T$\sub$a/ decreases. The effect of heat transfer coefficient at hot(heat releasing) side is more significant than that at cold(heat absorbing) side.

  • PDF

Performance of HFC32/HFC125 Mixtures for Heat Pumps (HFC32/HFC125 혼합냉매의 히트펌프 성능 평가)

  • Kim, Wook-Jin;Kang, Dong-Gyu;Lee, Yo-Han;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.12
    • /
    • pp.791-798
    • /
    • 2011
  • In this study, performance of R410A(50%R32/50%R125) and HFC32/HFC125 mixture is measured to examine the effect of composition shift of R410A used for various air-conditioners and heat pumps. The composition of HFC32/HFC125 mixture varies from the reference composition of R410A ${\pm}10%$ with 5% interval. Tests carried out in a heat pump bench tester at the evaporation and condensation temperatures of $7/45^{\circ}C$ and $-7/41^{\circ}C$ for summer and winter conditions, respectively. Test results show that both the coefficient of performance (COP) and compressor power of the HFC32/HFC125 mixture have the maximum difference of 2.0% as compared to those of R410A. Compressor discharge temperatures of HFC32/HFC125 mixture are increased up to $6.7^{\circ}C$ as compared to that of R410A. The amount of charge for HFC32/HFC125 mixture vary within 5.6% as compared to that of R410A. Overall, performance of R410A is not appreciably affected by the composition shift of ${\pm}10%$ of R32 under both air-conditioning and heat pumping conditions.

Performance Characteristics of Air-Cooled Heat Pump System using Hydrocarbon Refrigerants According to Variation of Outdoor Temperature (실외 온도 변화에 따른 HC계 공랭식 히트펌프 시스템의 성능 특성)

  • Jun Chul-Ho;Lee Ho-Saeng;Kim Jae-Dol;Yoon Jung-In
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.3
    • /
    • pp.218-224
    • /
    • 2006
  • The performance of an air to water vapor compression heat pump has been investigated experimentally. The main purpose of this study was to study the possibilities of using hydrocarbon refrigerants as a working fluid to replace R-22 for vapor compression heat pumps. Pure R-22 and R-290, R-600a, R-1270 were considered as working fluids. The performance of the system was characterized by compression shaft work, refrigeration capacity, pressure ratio, discharge temperature and COP. The experimental apparatus has basic parts of cycle that uses the air as a heat source. The experimental results show that refrigeration capacity of HC refrigerants is same or higher than that of R-22. On the other hand, compression shaft work of HC refrigerants is lower than that of R-22. Compression shaft work is lower than that of R-22. Come to the conclusion that, it is possible that hydrocarbon refrigerants could be drop-in alternatives for R-22.

Heating and Cooling Performance Characteristics of a Water-to-Water Heat Pump with R452B Refrigerant (R452B 냉매 적용 물대물 지열원 히트펌프 유닛의 냉난방 운전 성능 특성)

  • Choi, Youn Sung;Kang, Hee Jeong;Kim, Eun Oh
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.4
    • /
    • pp.14-20
    • /
    • 2017
  • Refrigerant having high global warming potentials will be phased out due to environmental protection issues. R410A has been widely used in geothermal heat pump. However, it has a little high GWP by 2088 value. One of the recommended substitute for R410A refrigerant is R452B which having a GWP by 698 value. In this paper, the heating and cooling performance of the water-to-water geothermal heat pump unit with R452B was experimentally investigated. The performance of the heat pump adopting R452B was also compared with the system applying R410A. The heating and cooling capacity of R452B heat pump system showed a slightly lower values within 2% comparing with R410A system. However, the R452B system's coefficient of performance was enhanced by 5.2% and 13.7% at heating and cooling mode, respectively.