• Title/Summary/Keyword: COMSOL software

Search Result 42, Processing Time 0.021 seconds

The Effect of Magnetic Field Direction on the Imaging Quality of Scanning Electron Microscope

  • Ai, Libo;Bao, Shengxiang;Hu, Yongda;Wang, Xueke;Luo, Chuan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • The significant reduction of the image quality caused by the magnetic field of samples is a major problem affecting the application of SEM (scanning electron microscopy) in the analysis of electronic devices. The main reason for this is that the electron trajectory is deflected by the Lorentz force. The usual solution to this problem is degaussing the sample at high temperatures. However, due to the poor heat resistance of some electronic components, it is imperative to find a method that can reduce the impact of magnetic field on the image quality and is straightforward and easy to operate without destroying the sample. In this paper, the influence of different magnetic field directions on the imaging quality was discussed by combining the experiment and software simulation. The principle of the method was studied, and the best observation direction was obtained.

Electromagnetic-thermal two-way coupling analysis and application on helium-cooled solid blanket

  • Kefan Zhang;Shuai Wang;Hongli Chen
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.927-938
    • /
    • 2023
  • The blanket plays an important role in fusion reactor and stands extremely high thermal and electromagnetic loads during operation situation and plasma disruption event, brings the need for precise thermal and electromagnetic analysis. Since the thermal field and EM field interact with each other nonlinearly, we develop a method of electromagnetic-thermal two-way coupling by using finite element software COMSOL. The coupling analyses of blanket under steady state and MD event are implemented and the results are analyzed. For steady state, the influences of coupling effects are relatively small but still recommended to be considered for a high precision analysis. The influence of thermal field on EM field can't be ignored under MD events. The variation of force density could cause a significant change in stress in certain parts of blanket. The influence of Joule heat during MD event is negligible, yet the potential temperature rise caused by induced current after MD event still needs to be researched.

Fatigue life evolution of steel wire considering corrosion-fatigue coupling effect: Analytical model and application

  • Yang Ding;Xiao-Wei Ye;Hong Zhang;Xue-Song Zhang
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.363-374
    • /
    • 2024
  • The fatigue life of steel wire is affected not only by fatigue load, but also by corrosion environment in service period. Specially, the corrosion pit will lead to stress concentration on the surface of steel wire inducing the formation of fatigue cracks, and the fatigue cracks will accelerate the corrosion process. Therefore, the corrosion fatigue of steel wire is a coupling effect. In this study, the corrosion-fatigue coupling life curve is derived with considering corrosion-fatigue pitting stage, corrosion-fatigue short crack stage and corrosion-fatigue long crack stage. In addition, the stress concentration factors of different corrosion pits are calculated by COMSOL software. Furthermore, the effect of corrosion environment factors, that is, corrosion rate, corrosion pit morphology, frequency and action factor of fatigue load, on fatigue life of steel wire is analyzed. And then, the corrosion-fatigue coupling life curve is compared with the fatigue life curve and fatigue life curve with pre-corrosion. The result showed that the anti-fatigue performance of the steel wire with considering corrosion-fatigue coupling is 68.08% and 41.79% lower than fatigue life curve and fatigue life curve with pre-corrosion. Therefore, the corrosion-fatigue coupling effect should be considered in the design of steel wire.

Numerical analysis of the venturi flowmeter in the liquid lead-bismuth eutectic circuit after long-term operation

  • Zhichao Zhang;Rafael Macian-Juan;Xiang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.1081-1090
    • /
    • 2024
  • The liquid Lead-bismuth eutectic is used as the coolant for Gen-IV reactor concepts. However, due to its strong corrosive and high operating temperature, it is difficult to accurately measure the flow rate in long-term operating conditions. Venturi flowmeter is a simple structured flowmeter, which plays a very important role in the flow measurement of high-temperature liquid metals, especially since the existing flowmeters are difficult to be competent. It has the advantages of easy maintenance and stable operation. Therefore, it is necessary to study the operating conditions of the venturi flowmeter under high-temperature conditions. This work performs a series of simulations of the fluid-solid interaction between the flow liquid metal and venturi flowmeter with COMSOL software, including the dimensional sensitivity analysis of the venturi flowmeter to explore the most suitable structure and parameters for liquid heavy metal, the sensitivity analysis of the geometric parameters of the venturi tube on the varying conditions. It shows that when the contraction angle of the venturi flowmeter is 33°, the diffusion angle is 13°, the diameter of the throat is 8 mm, and the temperature of the lead-bismuth eutectic is 733.15 K, it is most suitable for the measurement in the lead-bismuth circuit.

Deformation mechanisms of shallow-buried pipelines during road widening: Field and numerical investigation

  • Long Chen;Chenlei Xie;Zi Ye;Yonghui Chen;Zhewei Chai;Yun Li
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.15-28
    • /
    • 2024
  • The rapid development of the economy has compelled the widen of highways, and the main challenge of this undertaking lies in the uneven settlement of road embankments. Through field and numerical experiments, this study explores the deformation mechanism of shallow buried pipelines due to road widening. The utilization of Plaxis3D software, which is adapt at simulating complex engineering geological conditions, enables the simulation of the settlement of both the central and right-side road embankments. Comparing with other numerical software such as ABAQUS and COMSOL, Plaxis provided more constitutive models including HS, HSS and Hoek-Brown model. The work concludes that the uneven settlement of road cross-sections is positively correlated with the horizontal distance from the pipeline, with a maximum settlement of 73 mm observed after construction. Furthermore, based on the Winkler's assumption, theoretical settlement and stress calculation methods are established. Results indicate that the maximum difference between the calculated values of this formula and simulated values is 1.9% and 7%, respectively. Additionally, the study investigates the stress and settlement of the pipeline's top under different angles to understand its behavior under various conditions. It finds that with traffic loads applied to the new embankment, a lever effect occurs on the lower pipeline, with the fulcrum located within the central isolation zone, leading to a transition in curve type from "single peak and single valley" to "double peak and single valley." Moreover, the settlement of pipelines on both sides of the central isolation zone and the normal stress of the pipeline's top section are symmetrical.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.

Design of Micro-structured Small Scale Energy Harvesting System for Pervasive Computing Applications (편재형 컴퓨팅을 위한 미세구조 에너지 하베스팅 시스템의 구조 설계)

  • Min, Chul-Hong;Kim, Tae-Seon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.918-924
    • /
    • 2009
  • In this paper, we designed micro-structured electromagnetic transducers for energy harvesting and verified the performance of proposed transducers using finite element analysis software, COMSOL Multiphysics. To achieve higher energy transduce efficiency, around the magnetic core material, three-dimensional micro-coil structures with high number of turns are fabricated using semiconductor fabrication process technologies. To find relations between device size and energy transduce efficiency, generated electrical power values of seven different sizes of transducers ($3{\times}3\;mm^2$, $6{\times}6\;mm^2$, $9{\times}9\;mm^2$, $12{\times}12\;mm^2$, $15{\times}15\;mm^2$, $18{\times}18\;mm^2$, and $21{\times}21\;mm^2$) are analyzed on various magnetic flux density environment ranging from 0.84 T to 1.54 T and it showed that size of $15{\times}15\;mm^2$ device can generate $991.5\;{\mu}W$ at the 8 Hz of environmental kinetic energy. Compare to other electromagnetic energy harvesters, proposed system showed competitive performance in terms of power generation, operation bandwidth and size. Since proposed system can generate electric power at very low frequency of kinetic energy from typical life environment including walking and body movement, it is expected that proposed system can be effectively applied to various pervasive computing applications including power source of embodied medical equipment, power source of RFID sensors and etc. as an secondary power sources.

Development of Numerical Model of Electrode for Radiofrequency Catheter Ablation Considering Saline Irrigation and Temperature-controlled Radiofrequency System (온도 조절형 고주파 시스템 및 식염수 분사를 고려한 전극도자절제술용 전극의 수치 모델 개발)

  • Ahn, Jin-Woo;Kim, Young-Jin;Lee, Seung-A;Jung, Ha-Chul;Kim, Kyung-Ah;Cha, Eun-Jong;Moon, Jin-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.285-290
    • /
    • 2017
  • Radiofrequency catheter ablation is the interventional therapy that be employed to eliminate cardiac tissue caused by arrhythmias. During radiofrequency catheter ablation, The thrombus can occur at electrode tip if the temperature of tissue and electrode is excess $100^{\circ}C$. To prevent this phenomenon, we investigated numerical model of electrode for radiofrequency catheter ablation considering saline irrigation and temperature-controlled radiofrequency system. The numerical model is based on coupled electric-thermal-flow problem and solved by COMSOL Multiphysics software. The results of the models show that the dimensions of the thermal lesion are increased if the flow rate of the saline irrigation and the set temperature are increased. The surface width characterized to determine the thermal lesion isn't need to measure in temperature-controlled radiofrequency system due to convective heat transfer by saline irrigation at tissue-electrode interface.

Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests

  • Liu, Min;Li, Shouying;Chen, Zhengqing
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.619-629
    • /
    • 2020
  • Solar towers, which often has a large aspect ratio and low fundamental natural frequency, were extremely prone to large amplitude of wind-induced vibrations, especially Vortex-Induced Vibration (VIV). A tiny Tuned Mass Damper (TMD) with conveniently adjustable eddy current damping was specially designed and manufactured for elastic wind tunnel tests of a solar tower. A series of numerical simulations by using the COMSOL software were conducted to determine three key parameters, including the thickness of the back iron plate and the conductive plate (Tb and Tc), the distance between the magnet and the conductive plate (Td). Based on the results of numerical simulations, a tiny TMD was manufactured and its structural parameters were experimentally identified. The optimized values of the tiny TMD can be conveniently realized. The tiny TMD was installed at the top of the elastic test model of a 243-meter-high solar tower, and a series of wind tunnel tests were carried out to examine the effectiveness of the TMD in suppressing wind-induced responses of the test model. The results showed that the wind-induced responses could be obviously reduced by the TMD, especially in the cross-wind direction. The cross-wind RMS and peak responses at the critical wind velocity can be reduced by about 86% and 75%, respectively. However, the maximum reduction of the responses at the design wind velocity is about 45%, obviously less than that at the critical wind velocity.

AC transport current loss analysis for anti-parallel current flow in face-to-face stacks of superconducting tapes

  • Yoo, Jaeun;Han, Young-Hee;Kim, Hey-Rim;Park, Byung-Jun;Yang, Seong-Eun;Kim, Heesun;Yu, Seung-Duck;Park, Kijun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.42-46
    • /
    • 2014
  • In this study we investigated ac transport current losses in the face to face stack for the anti-parallel current flow, and compared the electromagnetic properties with those of the single SC tape as well as those of the same stack for the parallel current path. The gap between the SC tapes in the stack varied in order to verify the electromagnetic influence of the neighbors when current flows in opposite direction, and the model was implemented in the finite element method program by the commercial software, COMSOL Multiphysics 4.2a. Conclusively speaking, the loss was remarkably decreased for the anti-parallel current case, which is attributed the magnetic flux compensation between the SC layers due to the opposite direction of the current flows. As the gap between SC tapes was increased, the loss mitigation became less effective. Besides, the current density distribution is very flat cross the sample width for the narrower gap case, which is believed to be benefit for the power electric system. These results are all in good agreement with those predicted theoretically for an infinite bifilar stack.